Collaborative path planning and task allocation for multiple agricultural machines

Dijkstra算法 计算机科学 运动规划 路径(计算) 最短路径问题 调度(生产过程) 排队 数学优化 任务(项目管理) 过程(计算) 运筹学 图形 人工智能 工程类 数学 机器人 理论计算机科学 计算机网络 操作系统 系统工程
作者
Ning Wang,X. Jessie Yang,Tianhai Wang,Jianxing Xiao,Man Zhang,Hao Wang,Han Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108218-108218 被引量:37
标识
DOI:10.1016/j.compag.2023.108218
摘要

Path planning and task allocation are critical concerns in multi-machine collaborative operations for unmanned farms. Nevertheless, several problems remain in the operation of agricultural machinery, such as the slow path planning algorithm, the omission of the working area, and the unreasonable scheduling of machines, resulting in low efficiency and wasted resources. Collaborative and complete coverage path planning was achieved to solve the problems of slow path planning algorithms and the omission of working areas. The farm’s electronic map was constructed using the topological map method. The improved Dijkstra algorithm based on priority queues was combined with three different complete coverage methods: the nested method, the reciprocating method, and the combination of nested and internal spiral path methods. The simulation results show that the improved Dijkstra method based on priority queues can effectively minimize the running time of the algorithm. The reciprocating method has a higher coverage index than the other two methods, with an average coverage rate of 94.73 %. To solve the problem of illogical scheduling of the same type of agricultural machines, an improved ant colony method was presented based on the whole working path to minimize the path cost. The simulation results show that the proposed method can allocate the task properly, and the path cost is reduced by 14 %–33 %. By combining the proposed path planning and task allocation methods, the whole-process path planning of a single agricultural machine and multiple agricultural machines of the same type was achieved, providing a technical solution for promoting the construction of unmanned farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的妙之完成签到,获得积分10
刚刚
bellla完成签到 ,获得积分20
刚刚
刚刚
喵了个咪发布了新的文献求助10
刚刚
大模型应助1157588380采纳,获得10
刚刚
ding应助奋斗静蕾采纳,获得10
1秒前
strong.quite完成签到,获得积分10
2秒前
迪迦完成签到,获得积分10
3秒前
vendimia发布了新的文献求助10
3秒前
科研通AI5应助Capital采纳,获得10
5秒前
Cyrus发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
pcr163应助Lico采纳,获得200
8秒前
loren应助彩色的中蓝采纳,获得10
8秒前
9秒前
我不理解关注了科研通微信公众号
10秒前
酷波er应助难过冰淇淋采纳,获得10
10秒前
10秒前
左园园完成签到,获得积分10
12秒前
13秒前
儒雅的善愁完成签到,获得积分10
13秒前
一个小胖子完成签到,获得积分10
13秒前
goldNAN发布了新的文献求助10
13秒前
乐乐应助快乐映秋采纳,获得10
14秒前
15秒前
陈秋红完成签到,获得积分10
15秒前
PINk发布了新的文献求助10
16秒前
16秒前
章赛发布了新的文献求助10
17秒前
18秒前
左园园发布了新的文献求助10
19秒前
搜集达人应助DS采纳,获得10
19秒前
19秒前
19秒前
卢明月完成签到,获得积分10
19秒前
342396102发布了新的文献求助10
20秒前
一安完成签到,获得积分20
23秒前
PINk完成签到,获得积分10
23秒前
冬柳发布了新的文献求助10
23秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661