Collaborative path planning and task allocation for multiple agricultural machines

Dijkstra算法 计算机科学 运动规划 路径(计算) 最短路径问题 调度(生产过程) 排队 数学优化 任务(项目管理) 过程(计算) 运筹学 图形 人工智能 工程类 数学 机器人 理论计算机科学 计算机网络 操作系统 系统工程
作者
Ning Wang,X. Jessie Yang,Tianhai Wang,Jianxing Xiao,Man Zhang,Hao Wang,H. Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108218-108218 被引量:22
标识
DOI:10.1016/j.compag.2023.108218
摘要

Path planning and task allocation are critical concerns in multi-machine collaborative operations for unmanned farms. Nevertheless, several problems remain in the operation of agricultural machinery, such as the slow path planning algorithm, the omission of the working area, and the unreasonable scheduling of machines, resulting in low efficiency and wasted resources. Collaborative and complete coverage path planning was achieved to solve the problems of slow path planning algorithms and the omission of working areas. The farm’s electronic map was constructed using the topological map method. The improved Dijkstra algorithm based on priority queues was combined with three different complete coverage methods: the nested method, the reciprocating method, and the combination of nested and internal spiral path methods. The simulation results show that the improved Dijkstra method based on priority queues can effectively minimize the running time of the algorithm. The reciprocating method has a higher coverage index than the other two methods, with an average coverage rate of 94.73 %. To solve the problem of illogical scheduling of the same type of agricultural machines, an improved ant colony method was presented based on the whole working path to minimize the path cost. The simulation results show that the proposed method can allocate the task properly, and the path cost is reduced by 14 %–33 %. By combining the proposed path planning and task allocation methods, the whole-process path planning of a single agricultural machine and multiple agricultural machines of the same type was achieved, providing a technical solution for promoting the construction of unmanned farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇的薯片完成签到,获得积分10
1秒前
想人陪的向南完成签到,获得积分10
1秒前
2秒前
3秒前
英俊的铭应助六六采纳,获得10
4秒前
huk发布了新的文献求助10
4秒前
活力宝马完成签到,获得积分10
4秒前
6秒前
SYLH应助runtang采纳,获得10
6秒前
Hello应助neilhou采纳,获得10
6秒前
田様应助慕南枝采纳,获得10
7秒前
风中的怜阳完成签到,获得积分10
7秒前
孤梦落雨完成签到,获得积分10
9秒前
栗子发布了新的文献求助10
9秒前
平常冬天完成签到,获得积分10
10秒前
bkagyin应助橙汁采纳,获得10
12秒前
13秒前
帅气的新竹完成签到,获得积分10
14秒前
14秒前
墨冉发布了新的文献求助10
15秒前
fine完成签到,获得积分20
15秒前
Migrol完成签到,获得积分10
16秒前
clyhg完成签到,获得积分10
17秒前
Wink14551发布了新的文献求助10
17秒前
18秒前
neilhou发布了新的文献求助10
18秒前
上官若男应助Kakaluote采纳,获得10
20秒前
一个千年猪妖完成签到,获得积分20
20秒前
张弘完成签到,获得积分20
21秒前
两面性完成签到,获得积分20
21秒前
SciGPT应助栗子采纳,获得10
21秒前
22秒前
22秒前
麗会水逆退散完成签到,获得积分10
23秒前
小杨发布了新的文献求助10
24秒前
ytttt发布了新的文献求助10
25秒前
爱学习的鼠鼠完成签到,获得积分10
25秒前
Whim应助满意的龙猫采纳,获得30
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427