脊髓损伤
神经干细胞
再生医学
再生(生物学)
神经发生
神经保护
中枢神经系统
药理学
神经科学
脊髓
化学
生物
细胞生物学
干细胞
作者
Taoyang Yuan,Tianyou Wang,Jianhua Zhang,Pengyu Liu,Jiayi Xu,Zhipeng Gu,Jianguo Xu,Yiwen Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-09-14
卷期号:17 (18): 18562-18575
被引量:30
标识
DOI:10.1021/acsnano.3c06991
摘要
The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI