Radiomics systematic review in cervical cancer: gynecological oncologists’ perspective

医学 无线电技术 宫颈癌 放射科 透视图(图形) 妇科 医学物理学 梅德林 癌症 内科学 人工智能 政治学 计算机科学 法学
作者
Nicolò Bizzarri,Luca Russo,Miriam Dolciami,Konstantinos Zormpas‐Petridis,Luca Boldrini,Denis Querleu,Gabriella Ferrandina,Luigi Pedone Anchora,Benedetta Gui,Evis Sala,Giovanni Scambia
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:33 (10): 1522-1541 被引量:20
标识
DOI:10.1136/ijgc-2023-004589
摘要

Objective Radiomics is the process of extracting quantitative features from radiological images, and represents a relatively new field in gynecological cancers. Cervical cancer has been the most studied gynecological tumor for what concerns radiomics analysis. The aim of this study was to report on the clinical applications of radiomics combined and/or compared with clinical-pathological variables in patients with cervical cancer. Methods A systematic review of the literature from inception to February 2023 was performed, including studies on cervical cancer analysing a predictive/prognostic radiomics model, which was combined and/or compared with a radiological or a clinical-pathological model. Results A total of 57 of 334 (17.1%) screened studies met inclusion criteria. The majority of studies used magnetic resonance imaging (MRI), but positron emission tomography (PET)/computed tomography (CT) scan, CT scan, and ultrasound scan also underwent radiomics analysis. In apparent early-stage disease, the majority of studies (16/27, 59.3%) analysed the role of radiomics signature in predicting lymph node metastasis; six (22.2%) investigated the prediction of radiomics to detect lymphovascular space involvement, one (3.7%) investigated depth of stromal infiltration, and one investigated (3.7%) parametrial infiltration. Survival prediction was evaluated both in early-stage and locally advanced settings. No study focused on the application of radiomics in metastatic or recurrent disease. Conclusion Radiomics signatures were predictive of pathological and oncological outcomes, particularly if combined with clinical variables. These may be integrated in a model using different clinical-pathological and translational characteristics, with the aim to tailor and personalize the treatment of each patient with cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助yang采纳,获得10
2秒前
陈康完成签到,获得积分10
2秒前
Singularity发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
gxh完成签到,获得积分10
5秒前
haoooooooooooooo应助随缘采纳,获得10
6秒前
李健应助诗图采纳,获得10
7秒前
阿晨完成签到,获得积分10
8秒前
领导范儿应助自由的元冬采纳,获得30
9秒前
10秒前
橘微青完成签到,获得积分20
11秒前
12秒前
12秒前
BowieHuang应助xsx采纳,获得10
12秒前
或无情发布了新的文献求助10
12秒前
英姑应助Xing采纳,获得10
12秒前
yaya完成签到,获得积分10
13秒前
顺利毕业发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
香蕉觅云应助冷静的孤云采纳,获得10
14秒前
14秒前
小云杉发布了新的文献求助10
17秒前
18秒前
19秒前
MET1发布了新的文献求助10
19秒前
haoooooooooooooo应助随缘采纳,获得10
19秒前
19秒前
20秒前
今后应助苗条念云采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
宋垚发布了新的文献求助10
24秒前
24秒前
tusizi2006发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
27秒前
29秒前
曾经盼易发布了新的文献求助10
30秒前
你是我的唯一完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729103
求助须知:如何正确求助?哪些是违规求助? 5316038
关于积分的说明 15315703
捐赠科研通 4876092
什么是DOI,文献DOI怎么找? 2619225
邀请新用户注册赠送积分活动 1568759
关于科研通互助平台的介绍 1525277