Applying the causal roadmap to longitudinal national Danish registry data: a case study of second-line diabetes medication and dementia

因果推理 估计员 痴呆 背景(考古学) 计算机科学 计量经济学 混淆 丹麦语 统计推断 医学 心理学 统计 数学 地理 语言学 哲学 疾病 考古 病理
作者
Nerissa Nance,Andrew Mertens,Thomas Alexander Gerds,Zeyi Wang,Christian Torp‐Pedersen,Mark van der Laan,Kajsa Kvist,Theis Lange,Bochra Zareini,Maya Petersen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03235
摘要

The causal roadmap is a formal framework for causal and statistical inference that supports clear specification of the causal question, interpretable and transparent statement of required causal assumptions, robust inference, and optimal precision. The roadmap is thus particularly well-suited to evaluating longitudinal causal effects using large scale registries; however, application of the roadmap to registry data also introduces particular challenges. In this paper we provide a detailed case study of the longitudinal causal roadmap applied to the Danish National Registry to evaluate the comparative effectiveness of second-line diabetes drugs on dementia risk. Specifically, we evaluate the difference in counterfactual five-year cumulative risk of dementia if a target population of adults with type 2 diabetes had initiated and remained on GLP-1 receptor agonists (a second-line diabetes drug) compared to a range of active comparator protocols. Time-dependent confounding is accounted for through use of the iterated conditional expectation representation of the longitudinal g-formula as a statistical estimand. Statistical estimation uses longitudinal targeted maximum likelihood, incorporating machine learning. We provide practical guidance on the implementation of the roadmap using registry data, and highlight how rare exposures and outcomes over long-term follow up can raise challenges for flexible and robust estimators, even in the context of the large sample sizes provided by the registry. We demonstrate how simulations can be used to help address these challenges by supporting careful estimator pre-specification. We find a protective effect of GLP-1RAs compared to some but not all other second-line treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
znt发布了新的文献求助20
刚刚
柳行天完成签到 ,获得积分10
刚刚
刚刚
传奇3应助花海采纳,获得10
刚刚
芹菜发布了新的文献求助10
1秒前
ZZ完成签到,获得积分10
2秒前
球球完成签到,获得积分10
2秒前
songcy7发布了新的文献求助10
2秒前
于予鱼完成签到,获得积分10
2秒前
Akim应助心驰天外采纳,获得10
2秒前
星辰大海应助sunidea采纳,获得10
3秒前
XXY完成签到,获得积分10
3秒前
穷光蛋完成签到,获得积分10
3秒前
新手菜鸟发布了新的文献求助10
3秒前
ZZL完成签到,获得积分10
4秒前
晚若旧发布了新的文献求助10
4秒前
4秒前
4秒前
大头牌金枪鱼完成签到,获得积分10
4秒前
5秒前
JinQ完成签到,获得积分10
5秒前
5秒前
坚定冰海完成签到,获得积分10
6秒前
7秒前
KM比比发布了新的文献求助10
7秒前
Rainstorm27完成签到,获得积分10
7秒前
清清完成签到,获得积分20
7秒前
钦钦小豆包完成签到,获得积分10
7秒前
8秒前
hhh完成签到,获得积分20
8秒前
NexusExplorer应助美好蜻蜓采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得30
9秒前
所所应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769