Applying the causal roadmap to longitudinal national Danish registry data: a case study of second-line diabetes medication and dementia

因果推理 估计员 痴呆 背景(考古学) 计算机科学 计量经济学 混淆 丹麦语 统计推断 医学 心理学 统计 数学 地理 考古 病理 疾病 哲学 语言学
作者
Nerissa Nance,Andrew Mertens,Thomas Alexander Gerds,Zeyi Wang,Christian Torp‐Pedersen,Mark van der Laan,Kajsa Kvist,Theis Lange,Bochra Zareini,Maya Petersen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03235
摘要

The causal roadmap is a formal framework for causal and statistical inference that supports clear specification of the causal question, interpretable and transparent statement of required causal assumptions, robust inference, and optimal precision. The roadmap is thus particularly well-suited to evaluating longitudinal causal effects using large scale registries; however, application of the roadmap to registry data also introduces particular challenges. In this paper we provide a detailed case study of the longitudinal causal roadmap applied to the Danish National Registry to evaluate the comparative effectiveness of second-line diabetes drugs on dementia risk. Specifically, we evaluate the difference in counterfactual five-year cumulative risk of dementia if a target population of adults with type 2 diabetes had initiated and remained on GLP-1 receptor agonists (a second-line diabetes drug) compared to a range of active comparator protocols. Time-dependent confounding is accounted for through use of the iterated conditional expectation representation of the longitudinal g-formula as a statistical estimand. Statistical estimation uses longitudinal targeted maximum likelihood, incorporating machine learning. We provide practical guidance on the implementation of the roadmap using registry data, and highlight how rare exposures and outcomes over long-term follow up can raise challenges for flexible and robust estimators, even in the context of the large sample sizes provided by the registry. We demonstrate how simulations can be used to help address these challenges by supporting careful estimator pre-specification. We find a protective effect of GLP-1RAs compared to some but not all other second-line treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此晴可待完成签到,获得积分10
刚刚
shuangma完成签到,获得积分10
刚刚
DAI123发布了新的文献求助10
刚刚
goodsheep完成签到 ,获得积分10
1秒前
1秒前
1秒前
南木_完成签到,获得积分10
3秒前
4秒前
超帅连虎完成签到,获得积分10
4秒前
如意的冰双完成签到 ,获得积分10
5秒前
Dully97给Dully97的求助进行了留言
6秒前
6秒前
四辈完成签到,获得积分10
7秒前
妹妹完成签到,获得积分20
8秒前
fd163c应助Advance.Cheng采纳,获得10
8秒前
LaTeXer应助自由老头采纳,获得100
8秒前
崔浩宇发布了新的文献求助10
10秒前
NexusExplorer应助fiell采纳,获得10
10秒前
勤劳的乐安完成签到,获得积分10
11秒前
kitty发布了新的文献求助20
12秒前
kiltorh完成签到,获得积分10
12秒前
Orange应助平常的路人采纳,获得10
12秒前
13秒前
风犬少年完成签到,获得积分10
13秒前
13秒前
懒懒洋洋洋完成签到 ,获得积分10
13秒前
14秒前
詹密完成签到,获得积分10
14秒前
积极含羞草完成签到,获得积分10
15秒前
故事的小红花完成签到,获得积分10
15秒前
QWDSA完成签到,获得积分10
16秒前
龙华之士发布了新的文献求助10
17秒前
17秒前
北冥有鱼完成签到,获得积分10
19秒前
Yddear发布了新的文献求助10
19秒前
manfullmoon完成签到,获得积分10
19秒前
鲨鱼也蛀牙完成签到,获得积分10
19秒前
Dragon完成签到 ,获得积分10
19秒前
19秒前
李健应助小王采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048