Applying the causal roadmap to longitudinal national Danish registry data: a case study of second-line diabetes medication and dementia

因果推理 估计员 痴呆 背景(考古学) 计算机科学 计量经济学 混淆 丹麦语 统计推断 医学 心理学 统计 数学 地理 考古 病理 疾病 哲学 语言学
作者
Nerissa Nance,Andrew Mertens,Thomas Alexander Gerds,Zeyi Wang,Christian Torp‐Pedersen,Mark van der Laan,Kajsa Kvist,Theis Lange,Bochra Zareini,Maya Petersen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03235
摘要

The causal roadmap is a formal framework for causal and statistical inference that supports clear specification of the causal question, interpretable and transparent statement of required causal assumptions, robust inference, and optimal precision. The roadmap is thus particularly well-suited to evaluating longitudinal causal effects using large scale registries; however, application of the roadmap to registry data also introduces particular challenges. In this paper we provide a detailed case study of the longitudinal causal roadmap applied to the Danish National Registry to evaluate the comparative effectiveness of second-line diabetes drugs on dementia risk. Specifically, we evaluate the difference in counterfactual five-year cumulative risk of dementia if a target population of adults with type 2 diabetes had initiated and remained on GLP-1 receptor agonists (a second-line diabetes drug) compared to a range of active comparator protocols. Time-dependent confounding is accounted for through use of the iterated conditional expectation representation of the longitudinal g-formula as a statistical estimand. Statistical estimation uses longitudinal targeted maximum likelihood, incorporating machine learning. We provide practical guidance on the implementation of the roadmap using registry data, and highlight how rare exposures and outcomes over long-term follow up can raise challenges for flexible and robust estimators, even in the context of the large sample sizes provided by the registry. We demonstrate how simulations can be used to help address these challenges by supporting careful estimator pre-specification. We find a protective effect of GLP-1RAs compared to some but not all other second-line treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冥冥之极为昭昭完成签到,获得积分10
刚刚
1秒前
曼联名宿马奎尔完成签到,获得积分10
1秒前
研友_LMpo68完成签到 ,获得积分10
3秒前
3秒前
5秒前
6秒前
小xy完成签到,获得积分10
6秒前
7秒前
我是老大应助执着的采枫采纳,获得10
11秒前
XIAOJU_U完成签到 ,获得积分10
11秒前
11秒前
陈永伟完成签到,获得积分10
12秒前
violet完成签到,获得积分10
12秒前
deallyxyz应助勤奋旭尧采纳,获得10
12秒前
大模型应助思维隋采纳,获得10
12秒前
CipherSage应助青草木采纳,获得10
13秒前
fff123完成签到,获得积分10
14秒前
完美世界应助沉默的冬寒采纳,获得10
14秒前
自觉柠檬完成签到 ,获得积分10
16秒前
科研废材发布了新的文献求助10
16秒前
科研小菜完成签到,获得积分10
16秒前
17秒前
不是山谷发布了新的文献求助10
18秒前
红豆醉完成签到,获得积分20
20秒前
20秒前
Owen应助BananaSlayer采纳,获得10
21秒前
大模型应助学不懂数学采纳,获得50
21秒前
21秒前
jixi66完成签到,获得积分10
21秒前
22秒前
22秒前
红豆醉发布了新的文献求助20
23秒前
风趣的梦之完成签到,获得积分10
23秒前
deallyxyz应助李青采纳,获得20
24秒前
24秒前
wzg666完成签到,获得积分10
24秒前
炙热妙柏发布了新的文献求助10
24秒前
24秒前
bjr完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Organizational Commitment 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991160
求助须知:如何正确求助?哪些是违规求助? 3532403
关于积分的说明 11257383
捐赠科研通 3271375
什么是DOI,文献DOI怎么找? 1805404
邀请新用户注册赠送积分活动 882386
科研通“疑难数据库(出版商)”最低求助积分说明 809292