Sequence-Based Nanobody-Antigen Binding Prediction

抗原 计算生物学 计算机科学 对接(动物) 重组DNA 生物 基因 遗传学 医学 护理部
作者
Usama Sardar,Sarwan Ali,Muhammad Sohaib Ayub,Muhammad Shoaib,Khurram Bashir,Imdadullah Khan,Murray Patterson
出处
期刊:Lecture Notes in Computer Science 卷期号:: 227-240 被引量:3
标识
DOI:10.1007/978-981-99-7074-2_18
摘要

Nanobodies (Nb) are monomeric heavy-chain fragments derived from heavy-chain only antibodies naturally found in Camelids and Sharks. Their considerably small size ( $$\sim $$ 3–4 nm; 13 kDa) and favorable biophysical properties make them attractive targets for recombinant production. Furthermore, their unique ability to bind selectively to specific antigens, such as toxins, chemicals, bacteria, and viruses, makes them powerful tools in cell biology, structural biology, medical diagnostics, and future therapeutic agents in treating cancer and other serious illnesses. However, a critical challenge in nanobodies production is the unavailability of nanobodies for a majority of antigens. Although some computational methods have been proposed to screen potential nanobodies for given target antigens, their practical application is highly restricted due to their reliance on 3D structures. Moreover, predicting nanobody-antigen interactions (binding) is a time-consuming and labor-intensive task. This study aims to develop a machine-learning method to predict Nanobody-Antigen binding solely based on the sequence data. We curated a comprehensive dataset of Nanobody-Antigen binding and non-binding data and devised an embedding method based on gapped k-mers to predict binding based only on sequences of nanobody and antigen. Our approach achieves up to $$90\%$$ accuracy in binding prediction and is significantly more efficient compared to the widely-used computational docking technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的盼夏完成签到,获得积分10
刚刚
科研通AI5应助冷酷的雪柳采纳,获得10
1秒前
向阳葵发布了新的文献求助10
1秒前
1秒前
spenley完成签到,获得积分10
1秒前
1111完成签到,获得积分10
1秒前
wangwang2168发布了新的文献求助20
2秒前
3秒前
Orange应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
FashionBoy应助汉克爱学习采纳,获得10
4秒前
Andy_Cheung应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
思源应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
iNk应助科研通管家采纳,获得20
5秒前
d.zhang发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
蒙圈完成签到 ,获得积分10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738035
求助须知:如何正确求助?哪些是违规求助? 3281550
关于积分的说明 10025988
捐赠科研通 2998302
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782660
科研通“疑难数据库(出版商)”最低求助积分说明 749882