抗原
计算生物学
计算机科学
对接(动物)
重组DNA
生物
基因
遗传学
医学
护理部
作者
Usama Sardar,Sarwan Ali,Muhammad Sohaib Ayub,M. Shoaib,Khurram Bashir,Imdad Ullah Khan,Murray Patterson
标识
DOI:10.1007/978-981-99-7074-2_18
摘要
Nanobodies (Nb) are monomeric heavy-chain fragments derived from heavy-chain only antibodies naturally found in Camelids and Sharks. Their considerably small size ( $$\sim $$ 3–4 nm; 13 kDa) and favorable biophysical properties make them attractive targets for recombinant production. Furthermore, their unique ability to bind selectively to specific antigens, such as toxins, chemicals, bacteria, and viruses, makes them powerful tools in cell biology, structural biology, medical diagnostics, and future therapeutic agents in treating cancer and other serious illnesses. However, a critical challenge in nanobodies production is the unavailability of nanobodies for a majority of antigens. Although some computational methods have been proposed to screen potential nanobodies for given target antigens, their practical application is highly restricted due to their reliance on 3D structures. Moreover, predicting nanobody-antigen interactions (binding) is a time-consuming and labor-intensive task. This study aims to develop a machine-learning method to predict Nanobody-Antigen binding solely based on the sequence data. We curated a comprehensive dataset of Nanobody-Antigen binding and non-binding data and devised an embedding method based on gapped k-mers to predict binding based only on sequences of nanobody and antigen. Our approach achieves up to $$90\%$$ accuracy in binding prediction and is significantly more efficient compared to the widely-used computational docking technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI