Photothermal-driven Reforming of Methanol Solution into Hydrogen over Ultra-stable Cr-MOF-embedded CuInS2 Heterostructure

脱氢 化学工程 甲醇 催化作用 离解(化学) 化学 光化学 材料科学 物理化学 有机化学 工程类
作者
Wenting Lin,Jianxian Li,Ziyu Zengcai,Baofang Zhang,Xiaoping Wu,Yunhong Pi,Tiejun Wang
出处
期刊:Fuel [Elsevier]
卷期号:357: 129990-129990 被引量:3
标识
DOI:10.1016/j.fuel.2023.129990
摘要

Photothermal-driven reforming of methanol solution to hydrogen (PTRM) is an attractive way for sustainable in-situ hydrogen (H2) supply by solar energy. But the effective activation of MeOH and H2O to improve H2 production kinetics at low temperatures faces really challenge. As the cleavage energy barrier of CH bond in methanol is much higher than that of OH bond dissociation, here, we propose the use of CuInS2 with high interfacial hydroxyl activation capacity to integrate with MIL-101(Cr) matrix via in-situ encapsulation strategy. The pore confinement and site isolation of Cr-MOF matrix (MIL-101(Cr)) keep the high dispersion of CuInS2 (4.20 nm) and prohibit its agglomeration in PTRM. With synergistically photothermal effect, the insertion of CuInS2 not only provides a high-speed channel for photoexcited charge migration through the interface between CuInS2 and MIL-101(Cr) but also enhances the dehydrogenation activity of MeOH and H2O effectively as an electron-enriched tank. Moreover, the excellent ability of CuInS2 to dissociate H2O molecules at low temperature promoted the formation of abundant interfacial OH, which reinforces the CH bond cleavage of MeOH to decline the apparent activation energy (26%) and boost the H2 evolution kinetics (36233.0 μmolgcat-1h−1). Encouragingly, CuInS2@MIL-101(Cr) with an exceptional total turnover number (TON) climbing up to 16,775 in 65 h of run without catalyst deactivation. This work provides an important insight for the rational design of ultra-stable photo-thermal catalysts toward solar-driven reforming of methanol solution to hydrogen and conducive to the high activity performance in hydrogen-powered polymer electrolyte membrane (PEMFC) fuel cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
生生发布了新的文献求助10
2秒前
lmy完成签到,获得积分10
3秒前
3秒前
kleinlme发布了新的文献求助10
4秒前
Akim应助BYN采纳,获得10
4秒前
烟花应助电四拟采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
chenlin应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
顾矜应助蘑菇腿采纳,获得10
8秒前
于是完成签到,获得积分10
9秒前
目夕关注了科研通微信公众号
10秒前
在水一方应助江沉晚吟采纳,获得30
12秒前
是冬天完成签到,获得积分10
13秒前
13秒前
Owen应助kleinlme采纳,获得10
15秒前
16秒前
17秒前
长情招牌发布了新的文献求助10
17秒前
Owen应助岳小龙采纳,获得10
19秒前
20秒前
陈文青发布了新的文献求助10
20秒前
YY发布了新的文献求助10
21秒前
电四拟发布了新的文献求助10
22秒前
桐桐应助Hellowa采纳,获得10
23秒前
陌路完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161275
求助须知:如何正确求助?哪些是违规求助? 2812718
关于积分的说明 7896398
捐赠科研通 2471562
什么是DOI,文献DOI怎么找? 1316052
科研通“疑难数据库(出版商)”最低求助积分说明 631098
版权声明 602112