已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics

生物 基因 Lasso(编程语言) 微阵列分析技术 计算生物学 特征选择 DNA微阵列 生物信息学 支持向量机 微阵列 遗传学 基因表达 机器学习 计算机科学 万维网
作者
Y Y Hua,Danyingzhu Xie,Yugang Zhang,Ming Wang,Weiheng Wen,Jia Sun
出处
期刊:Gene [Elsevier]
卷期号:888: 147755-147755 被引量:4
标识
DOI:10.1016/j.gene.2023.147755
摘要

Obesity is a complex condition that is affected by a variety of factors, including the environment, behavior, and genetics. However, the genetic mechanisms underlying obesity remains poorly elucidated. Therefore, our study aimed at identifying key genes for human obesity using bioinformatics analysis.The microarray datasets of adipose tissue in humans were downloaded from the Gene Expression Omnibus (GEO) database. After the selection of differentially expressed genes (DEGs), we used Lasso regression and Support Vector Machine (SVM) algorithm to further identify the feature genes. Moreover, immune cell infiltration analysis, gene set variation analysis (GSVA), GeneCards database and transcriptional regulation analysis were conducted to study the potential mechanisms by which the feature genes may impact obesity. We utilized receiver operating characteristic (ROC) curve to analysis the diagnostic efficacy of feature genes. Finally, we verified the feature genes in cell experiments and animal experiments. The statistical analyses in validation experiments were conducted using SPSS version 28.0, and the graph were generated using GraphPad Prism 9.0 software. The bioinformatics analyses were conducted using R language (version 4.2.2), with a significance threshold of p < 0.05 used.199 DEGs were selected using Limma package, and subsequently, 5 feature genes (EGR2, NPY1R, GREM1, BMP3 and COL8A1) were selected through Lasso regression and SVM algorithm. Through various bioinformatics analyses, we found some signaling pathways by which feature genes influence obesity and also revealed the crucial role of these genes in the immune microenvironment, as well as their strong correlations with obesity-related genes. Additionally, ROC curve showed that all the feature genes had good predictive and diagnostic efficiency in obesity. Finally, after validation through in vitro experiments, EGR2, NPY1R and GREM1 were identified as the key genes.This study identified EGR2, GREM1 and NPY1R as the potential key genes and potential diagnostic biomarkers for obesity in humans. Moreover, EGR2 was discovered as a key gene for obesity in human adipose tissue for the first time, which may provide novel targets for diagnosing and treating obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyan完成签到,获得积分20
4秒前
Corundum发布了新的文献求助20
9秒前
11秒前
辉夜折影完成签到,获得积分10
12秒前
共享精神应助shane采纳,获得10
15秒前
小付发布了新的文献求助10
16秒前
姜姜完成签到 ,获得积分10
20秒前
20秒前
汪鸡毛完成签到 ,获得积分10
21秒前
床头经济学完成签到,获得积分10
21秒前
22秒前
小付完成签到,获得积分10
23秒前
23秒前
Lemon发布了新的文献求助10
26秒前
26秒前
26秒前
29秒前
ding应助喜悦的如娆采纳,获得10
31秒前
ding应助中学分子采纳,获得10
32秒前
plotu完成签到,获得积分10
34秒前
ljx完成签到 ,获得积分10
35秒前
小骄傲完成签到,获得积分10
36秒前
38秒前
utopia发布了新的文献求助30
42秒前
43秒前
44秒前
Zilch发布了新的文献求助10
45秒前
玉沐沐完成签到 ,获得积分10
47秒前
48秒前
坐雨赏花完成签到 ,获得积分10
49秒前
50秒前
橙子发布了新的文献求助10
50秒前
阿梅梅梅发布了新的文献求助10
51秒前
shareef发布了新的文献求助10
51秒前
utopia完成签到,获得积分10
52秒前
53秒前
53秒前
虚幻笑晴发布了新的文献求助10
54秒前
追寻夜香发布了新的文献求助30
54秒前
猫也不知道完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511