Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics

生物 基因 Lasso(编程语言) 微阵列分析技术 计算生物学 特征选择 DNA微阵列 生物信息学 支持向量机 微阵列 遗传学 基因表达 机器学习 计算机科学 万维网
作者
Y Y Hua,Danyingzhu Xie,Yugang Zhang,Ming Wang,Weiheng Wen,Jia Sun
出处
期刊:Gene [Elsevier BV]
卷期号:888: 147755-147755 被引量:4
标识
DOI:10.1016/j.gene.2023.147755
摘要

Obesity is a complex condition that is affected by a variety of factors, including the environment, behavior, and genetics. However, the genetic mechanisms underlying obesity remains poorly elucidated. Therefore, our study aimed at identifying key genes for human obesity using bioinformatics analysis.The microarray datasets of adipose tissue in humans were downloaded from the Gene Expression Omnibus (GEO) database. After the selection of differentially expressed genes (DEGs), we used Lasso regression and Support Vector Machine (SVM) algorithm to further identify the feature genes. Moreover, immune cell infiltration analysis, gene set variation analysis (GSVA), GeneCards database and transcriptional regulation analysis were conducted to study the potential mechanisms by which the feature genes may impact obesity. We utilized receiver operating characteristic (ROC) curve to analysis the diagnostic efficacy of feature genes. Finally, we verified the feature genes in cell experiments and animal experiments. The statistical analyses in validation experiments were conducted using SPSS version 28.0, and the graph were generated using GraphPad Prism 9.0 software. The bioinformatics analyses were conducted using R language (version 4.2.2), with a significance threshold of p < 0.05 used.199 DEGs were selected using Limma package, and subsequently, 5 feature genes (EGR2, NPY1R, GREM1, BMP3 and COL8A1) were selected through Lasso regression and SVM algorithm. Through various bioinformatics analyses, we found some signaling pathways by which feature genes influence obesity and also revealed the crucial role of these genes in the immune microenvironment, as well as their strong correlations with obesity-related genes. Additionally, ROC curve showed that all the feature genes had good predictive and diagnostic efficiency in obesity. Finally, after validation through in vitro experiments, EGR2, NPY1R and GREM1 were identified as the key genes.This study identified EGR2, GREM1 and NPY1R as the potential key genes and potential diagnostic biomarkers for obesity in humans. Moreover, EGR2 was discovered as a key gene for obesity in human adipose tissue for the first time, which may provide novel targets for diagnosing and treating obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzcres完成签到,获得积分10
刚刚
刚刚
JamesPei应助wanci采纳,获得30
1秒前
zhongu发布了新的文献求助10
1秒前
稳重夏菡完成签到 ,获得积分10
2秒前
lemon发布了新的文献求助10
2秒前
Singularity应助ZHU采纳,获得10
2秒前
3秒前
阁下久等了完成签到 ,获得积分10
4秒前
4秒前
北夏发布了新的文献求助10
4秒前
5秒前
鸣笛应助小流星采纳,获得30
5秒前
5秒前
Lv发布了新的文献求助10
6秒前
6秒前
Lucas应助骑驴找马采纳,获得10
6秒前
Singularity应助勤奋的汉堡采纳,获得10
7秒前
syhjxk发布了新的文献求助10
8秒前
Battery-Li完成签到,获得积分10
8秒前
殿祥G完成签到,获得积分10
9秒前
Chris发布了新的文献求助10
9秒前
开心的眼睛完成签到,获得积分10
9秒前
随机发布了新的文献求助10
9秒前
9秒前
善学以致用应助JIU夭采纳,获得10
11秒前
杨雪妮发布了新的文献求助10
11秒前
13秒前
Cloud完成签到,获得积分0
13秒前
天天快乐应助hqf采纳,获得10
14秒前
7123完成签到,获得积分10
14秒前
SYLH应助科研通管家采纳,获得30
14秒前
思源应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
司空豁应助科研通管家采纳,获得10
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942