Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics

生物 基因 Lasso(编程语言) 微阵列分析技术 计算生物学 特征选择 DNA微阵列 生物信息学 支持向量机 微阵列 遗传学 基因表达 机器学习 计算机科学 万维网
作者
Y Y Hua,Danyingzhu Xie,Yugang Zhang,Ming Wang,Weiheng Wen,Jia Sun
出处
期刊:Gene [Elsevier]
卷期号:888: 147755-147755 被引量:4
标识
DOI:10.1016/j.gene.2023.147755
摘要

Obesity is a complex condition that is affected by a variety of factors, including the environment, behavior, and genetics. However, the genetic mechanisms underlying obesity remains poorly elucidated. Therefore, our study aimed at identifying key genes for human obesity using bioinformatics analysis.The microarray datasets of adipose tissue in humans were downloaded from the Gene Expression Omnibus (GEO) database. After the selection of differentially expressed genes (DEGs), we used Lasso regression and Support Vector Machine (SVM) algorithm to further identify the feature genes. Moreover, immune cell infiltration analysis, gene set variation analysis (GSVA), GeneCards database and transcriptional regulation analysis were conducted to study the potential mechanisms by which the feature genes may impact obesity. We utilized receiver operating characteristic (ROC) curve to analysis the diagnostic efficacy of feature genes. Finally, we verified the feature genes in cell experiments and animal experiments. The statistical analyses in validation experiments were conducted using SPSS version 28.0, and the graph were generated using GraphPad Prism 9.0 software. The bioinformatics analyses were conducted using R language (version 4.2.2), with a significance threshold of p < 0.05 used.199 DEGs were selected using Limma package, and subsequently, 5 feature genes (EGR2, NPY1R, GREM1, BMP3 and COL8A1) were selected through Lasso regression and SVM algorithm. Through various bioinformatics analyses, we found some signaling pathways by which feature genes influence obesity and also revealed the crucial role of these genes in the immune microenvironment, as well as their strong correlations with obesity-related genes. Additionally, ROC curve showed that all the feature genes had good predictive and diagnostic efficiency in obesity. Finally, after validation through in vitro experiments, EGR2, NPY1R and GREM1 were identified as the key genes.This study identified EGR2, GREM1 and NPY1R as the potential key genes and potential diagnostic biomarkers for obesity in humans. Moreover, EGR2 was discovered as a key gene for obesity in human adipose tissue for the first time, which may provide novel targets for diagnosing and treating obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Zhao完成签到,获得积分10
3秒前
波波完成签到,获得积分10
3秒前
广州东站完成签到,获得积分10
4秒前
香蕉白容完成签到,获得积分10
4秒前
松山小吏完成签到,获得积分10
5秒前
sss完成签到,获得积分10
5秒前
PhD_Lee73完成签到 ,获得积分10
6秒前
公龟完成签到,获得积分0
6秒前
QiWei完成签到 ,获得积分10
6秒前
青年才俊完成签到 ,获得积分10
7秒前
科研通AI2S应助Cold-Drink-Shop采纳,获得10
7秒前
Susie完成签到,获得积分20
7秒前
碧蓝世立完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
救救小迷糊吧完成签到,获得积分10
8秒前
shm123321完成签到,获得积分10
10秒前
我学不进去了完成签到,获得积分10
10秒前
wsy完成签到,获得积分10
10秒前
出水芙蓉完成签到,获得积分10
11秒前
ah_junlei完成签到,获得积分10
11秒前
机灵纸鹤完成签到 ,获得积分10
11秒前
研友_LXdbaL完成签到,获得积分10
12秒前
小蘑菇应助csy采纳,获得10
12秒前
荀煜祺发布了新的文献求助10
12秒前
zhscu完成签到,获得积分10
13秒前
lemon完成签到,获得积分10
13秒前
Nine完成签到 ,获得积分10
13秒前
an完成签到,获得积分10
13秒前
jingchengke完成签到,获得积分10
13秒前
AAAA完成签到,获得积分10
13秒前
玛卡巴卡完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
丰富的柏柳完成签到 ,获得积分10
14秒前
14秒前
憨憨的小于完成签到,获得积分10
14秒前
i羽翼深蓝i完成签到,获得积分10
15秒前
anpina完成签到,获得积分10
15秒前
15秒前
tanc完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698678
求助须知:如何正确求助?哪些是违规求助? 5125927
关于积分的说明 15222008
捐赠科研通 4853689
什么是DOI,文献DOI怎么找? 2604206
邀请新用户注册赠送积分活动 1555733
关于科研通互助平台的介绍 1514086