A Data and Model Parallelism based Distributed Deep Learning System in a Network of Edge Devices

计算机科学 GSM演进的增强数据速率 云计算 边缘计算 边缘设备 节点(物理) 启发式 仿真 分布式计算 加入 特征(语言学) 深度学习 并行计算 人工智能 哲学 程序设计语言 经济 工程类 操作系统 结构工程 经济增长 语言学
作者
Tanmoy Sen,Haiying Shen
标识
DOI:10.1109/icccn58024.2023.10230190
摘要

With the emergence of edge computing along with its local computation advantage over the cloud, methods for distributed deep learning (DL) training on edge nodes have been proposed. The increasing scale of DL models and large training dataset poses a challenge to run such jobs in one edge node due to resource constraints. However, the proposed methods either run the entire model in one edge node, collect all training data into one edge node, or still involve the remote cloud. To handle the challenge, we propose a fully distributed training system that realizes both Data and Model Parallelism over a network of edge devices (called DMP). It clusters the edge nodes to build a training structure by taking advantage of the feature that distributed edge nodes sense data for training. For each cluster, we propose a heuristic and a Reinforcement Learning (RL) based algorithm to handle the problem of how to partition a DL model and assign the partitions to edge nodes for model parallelism to minimize the overall training time. Taking advantage of the feature that geographically close edge nodes sense similar data, we further propose two schemes to avoid transferring duplicated data to the first-layer edge node as training data without compromising accuracy. Our container-based emulation and real edge node experiments show that our systems reduce up to 44% training time while maintaining the accuracy comparing with the state-of-the-art approaches. We also open sourced our source code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
小小酥被卷了完成签到,获得积分10
1秒前
迷途羔羊发布了新的文献求助10
1秒前
xixi完成签到,获得积分10
1秒前
美满夕阳完成签到,获得积分10
1秒前
Jasper应助叶白山采纳,获得10
2秒前
2秒前
啊怙纲完成签到 ,获得积分10
4秒前
HBY发布了新的文献求助10
5秒前
6秒前
ESTHERDY发布了新的文献求助10
6秒前
6秒前
1111完成签到,获得积分10
6秒前
7秒前
田様应助入变采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
vvvvvvvvvvvv111完成签到,获得积分10
9秒前
脑洞疼应助大宝君采纳,获得10
10秒前
徐籍发布了新的文献求助10
10秒前
natuer完成签到,获得积分10
11秒前
coconut完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
California完成签到 ,获得积分10
13秒前
natuer发布了新的文献求助20
14秒前
15秒前
高高烙完成签到,获得积分10
15秒前
情怀应助某人采纳,获得10
15秒前
陈航完成签到,获得积分10
16秒前
kmzzy完成签到 ,获得积分10
17秒前
17秒前
小白熊应助fu采纳,获得20
17秒前
sinlar发布了新的文献求助10
17秒前
南瓜气气完成签到,获得积分10
18秒前
Jiaox发布了新的文献求助10
19秒前
20秒前
牛牛超人完成签到,获得积分10
21秒前
杏杏发布了新的文献求助10
22秒前
传奇3应助郑泽航采纳,获得10
22秒前
潮流季关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382