A Data and Model Parallelism based Distributed Deep Learning System in a Network of Edge Devices

计算机科学 GSM演进的增强数据速率 云计算 边缘计算 边缘设备 节点(物理) 启发式 仿真 分布式计算 加入 特征(语言学) 深度学习 并行计算 人工智能 哲学 程序设计语言 经济 工程类 操作系统 结构工程 经济增长 语言学
作者
Tanmoy Sen,Haiying Shen
标识
DOI:10.1109/icccn58024.2023.10230190
摘要

With the emergence of edge computing along with its local computation advantage over the cloud, methods for distributed deep learning (DL) training on edge nodes have been proposed. The increasing scale of DL models and large training dataset poses a challenge to run such jobs in one edge node due to resource constraints. However, the proposed methods either run the entire model in one edge node, collect all training data into one edge node, or still involve the remote cloud. To handle the challenge, we propose a fully distributed training system that realizes both Data and Model Parallelism over a network of edge devices (called DMP). It clusters the edge nodes to build a training structure by taking advantage of the feature that distributed edge nodes sense data for training. For each cluster, we propose a heuristic and a Reinforcement Learning (RL) based algorithm to handle the problem of how to partition a DL model and assign the partitions to edge nodes for model parallelism to minimize the overall training time. Taking advantage of the feature that geographically close edge nodes sense similar data, we further propose two schemes to avoid transferring duplicated data to the first-layer edge node as training data without compromising accuracy. Our container-based emulation and real edge node experiments show that our systems reduce up to 44% training time while maintaining the accuracy comparing with the state-of-the-art approaches. We also open sourced our source code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
肉肉完成签到 ,获得积分10
1秒前
cancan完成签到,获得积分10
2秒前
zhuangbaobao发布了新的文献求助10
5秒前
郭6666发布了新的文献求助10
6秒前
完美世界应助留胡子的火采纳,获得10
11秒前
脑洞疼应助郭6666采纳,获得10
11秒前
公冶愚志完成签到,获得积分10
14秒前
威武的皮卡丘完成签到,获得积分10
20秒前
20秒前
20秒前
大龙哥886应助ri_290采纳,获得10
21秒前
sevenhill应助Devastating采纳,获得10
23秒前
23秒前
今后应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得30
24秒前
拼搏应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得20
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
小新应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
鬼切关注了科研通微信公众号
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
scaler完成签到,获得积分10
25秒前
26秒前
xinbowey发布了新的文献求助10
26秒前
xiao完成签到 ,获得积分10
28秒前
29秒前
默默早晨完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555