Blood-based genome-wide DNA methylation correlations across body-fat- and adiposity-related biochemical traits

德纳姆 生物 DNA甲基化 遗传学 二元分析 特质 表观遗传学 基因 统计 基因表达 数学 计算机科学 程序设计语言
作者
Alesha Hatton,Robert F. Hillary,Elena Bernabeu,Daniel L. McCartney,Riccardo E. Marioni,Allan F. McRae
出处
期刊:American Journal of Human Genetics [Elsevier]
卷期号:110 (9): 1564-1573 被引量:1
标识
DOI:10.1016/j.ajhg.2023.08.004
摘要

The recent increase in obesity levels across many countries is likely to be driven by nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to explore this, as it is sensitive to both genetic and environmental exposures. While the relationship between DNAm and body-fat traits has been extensively studied, there is limited literature on the shared associations of DNAm variation across such traits. Akin to genetic correlation estimates, here, we introduce an approach to evaluate the similarities in DNAm associations between traits: DNAm correlations. As DNAm can be both a cause and consequence of complex traits, DNAm correlations have the potential to provide insights into trait relationships above that currently obtained from genetic and phenotypic correlations. Utilizing 7,519 unrelated individuals from Generation Scotland with DNAm from the EPIC array, we calculated DNAm correlations between body-fat- and adiposity-related traits by using the bivariate OREML framework in the OSCA software. For each trait, we also estimated the shared contribution of DNAm between sexes. We identified strong, positive DNAm correlations between each of the body-fat traits (BMI, body-fat percentage, and waist-to-hip ratio, ranging from 0.96 to 1.00), finding larger associations than those identified by genetic and phenotypic correlations. We identified a significant deviation from 1 in the DNAm correlations for BMI between males and females, with sex-specific DNAm changes associated with BMI identified at eight DNAm probes. Employing genome-wide DNAm correlations to evaluate the similarities in the associations of DNAm with complex traits has provided insight into obesity-related traits beyond that provided by genetic correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
团团完成签到,获得积分10
刚刚
追寻的易烟完成签到,获得积分10
刚刚
snow完成签到,获得积分10
1秒前
1秒前
1秒前
1111完成签到,获得积分20
2秒前
爆米花应助笑点低蜜蜂采纳,获得10
2秒前
橘子味汽水完成签到 ,获得积分10
2秒前
Victor陈完成签到,获得积分10
2秒前
2秒前
seed85完成签到,获得积分10
2秒前
最初完成签到,获得积分20
3秒前
Hello应助Chem is try采纳,获得10
3秒前
hhh发布了新的文献求助10
3秒前
3秒前
4秒前
落寞白曼完成签到,获得积分10
5秒前
5秒前
海鸥海鸥发布了新的文献求助10
6秒前
别让我误会完成签到 ,获得积分10
7秒前
7秒前
KK发布了新的文献求助30
7秒前
娃娃完成签到 ,获得积分20
7秒前
科研通AI5应助结实的冰真采纳,获得30
7秒前
冷静的小熊猫完成签到,获得积分10
8秒前
Donnie完成签到,获得积分10
8秒前
若尘完成签到,获得积分10
9秒前
椰子完成签到 ,获得积分10
9秒前
9秒前
细腻涵菱完成签到,获得积分10
10秒前
吕耀炜完成签到,获得积分10
10秒前
10秒前
10秒前
简称王完成签到 ,获得积分10
10秒前
蓝莓松饼完成签到,获得积分10
11秒前
一路高飛完成签到,获得积分10
11秒前
赘婿应助andyxrz采纳,获得10
11秒前
Zhang完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672