计算机科学
生成对抗网络
人工智能
核(代数)
残余物
源代码
高分辨率
变压器
编码(集合论)
分辨率(逻辑)
图像分辨率
人工神经网络
计算机工程
深度学习
遥感
算法
程序设计语言
工程类
电气工程
数学
集合(抽象数据类型)
组合数学
电压
地质学
作者
Azhan Mohammed,Mohammad Kashif,Md Haider Zama,Mairaj Ahmed Ansari,Saquib Ali
标识
DOI:10.1109/igarss52108.2023.10283196
摘要
The task of transforming low-resolution remote sensing images to high-resolution has consistently presented a formidable challenge in the field. The use of Generative Adversarial Networks (GANs) has led to tremendous development in the field. In this study, a novel super resolution architecture Multiple Attention Swin Transformer Enhanced Residual GAN (MASTER GAN) has been introduced, that uses multiple attention techniques in a neural network trained in an adversarial training environment. The introduced MASTER GAN acheives state-of-the-art results in super resolution tasks, when compared to existing mechanism. The paper also introduces an open source database of low resolution and counter high resolution imagery, generated using Kernel GAN. The training code has been provided at: https://github.com/sheikhazhanmohammed/MASTERGAN.git
科研通智能强力驱动
Strongly Powered by AbleSci AI