An electronic nose based on adaptive fusion of transformer-ELM with active temperature modulation algorithm for accurate odor detection in refrigerators

电子鼻 气味 计算机科学 算法 人工智能 工艺工程 工程类 化学 有机化学
作者
Jie Sun,Hui Chen,Zhilin Sun,Xiaozheng Wang,Yan Shi,Xiangjun Zhao,Hao Zheng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108343-108343 被引量:3
标识
DOI:10.1016/j.compag.2023.108343
摘要

Accurate detection of food spoilage in refrigerators is crucial for ensuring food freshness and safety. However, due to the wide variety of gases emitted by decaying food and their uneven distribution of gases within the refrigerator, current mixed odor detection methods are not satisfactory. This study proposes a dedicated algorithm for a refrigerator electronic nose that enables precise classification of mixed food odors and prediction of their intensity. To achieve this objective, a dataset of food odor samples was collected from refrigerators, and sensory identification as well as gas chromatography-mass spectrometry analysis were performed to obtain freshness and intensity labels. The developed electronic nose algorithm incorporates key techniques, including active temperature modulation and an adaptive fusion model of lightweight Transformer-ELM, to enhance sensitivity, selectivity, and global modeling capabilities for identifying abnormal odors in volatile compounds of mixed gases. Experimental evaluations on a large-scale dataset demonstrate the effectiveness of the proposed method in classifying refrigerated food freshness and predicting odor intensity. This research contributes to the field of electronic nose technology and has potential for applications beyond refrigerator odor detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LT发布了新的文献求助10
2秒前
baoxiaozhai完成签到 ,获得积分10
2秒前
baoxiaozhai完成签到 ,获得积分10
2秒前
baoxiaozhai完成签到 ,获得积分10
2秒前
零城XL完成签到 ,获得积分10
3秒前
WC发布了新的文献求助10
3秒前
hoshi发布了新的文献求助10
5秒前
5秒前
6秒前
爱小妍发布了新的文献求助10
6秒前
proverby完成签到,获得积分10
7秒前
7秒前
ww完成签到,获得积分20
7秒前
LT完成签到,获得积分20
7秒前
学习怪完成签到,获得积分10
8秒前
9秒前
orixero应助naych采纳,获得10
9秒前
云泽应助高兴断秋采纳,获得10
9秒前
yuki发布了新的文献求助10
9秒前
zzzzz发布了新的文献求助10
9秒前
我超爱cs完成签到,获得积分10
10秒前
10秒前
11秒前
Robby完成签到 ,获得积分10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得30
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352677
求助须知:如何正确求助?哪些是违规求助? 4485481
关于积分的说明 13963212
捐赠科研通 4385463
什么是DOI,文献DOI怎么找? 2409427
邀请新用户注册赠送积分活动 1401828
关于科研通互助平台的介绍 1375439