An electronic nose based on adaptive fusion of transformer-ELM with active temperature modulation algorithm for accurate odor detection in refrigerators

电子鼻 气味 计算机科学 算法 人工智能 工艺工程 工程类 化学 有机化学
作者
Jie Sun,Hui Chen,Zhilin Sun,Xiaozheng Wang,Yan Shi,Xiangjun Zhao,Hao Zheng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108343-108343 被引量:3
标识
DOI:10.1016/j.compag.2023.108343
摘要

Accurate detection of food spoilage in refrigerators is crucial for ensuring food freshness and safety. However, due to the wide variety of gases emitted by decaying food and their uneven distribution of gases within the refrigerator, current mixed odor detection methods are not satisfactory. This study proposes a dedicated algorithm for a refrigerator electronic nose that enables precise classification of mixed food odors and prediction of their intensity. To achieve this objective, a dataset of food odor samples was collected from refrigerators, and sensory identification as well as gas chromatography-mass spectrometry analysis were performed to obtain freshness and intensity labels. The developed electronic nose algorithm incorporates key techniques, including active temperature modulation and an adaptive fusion model of lightweight Transformer-ELM, to enhance sensitivity, selectivity, and global modeling capabilities for identifying abnormal odors in volatile compounds of mixed gases. Experimental evaluations on a large-scale dataset demonstrate the effectiveness of the proposed method in classifying refrigerated food freshness and predicting odor intensity. This research contributes to the field of electronic nose technology and has potential for applications beyond refrigerator odor detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助轩辕唯雪采纳,获得10
1秒前
pe发布了新的文献求助10
1秒前
2秒前
菠萝夫司机完成签到,获得积分10
2秒前
2秒前
4秒前
zzz发布了新的文献求助10
5秒前
5秒前
moumou发布了新的文献求助20
6秒前
6秒前
卓飞扬完成签到,获得积分10
6秒前
万物安生完成签到,获得积分10
7秒前
RosyBai发布了新的文献求助10
7秒前
大个应助Zirong采纳,获得10
8秒前
满眼星辰发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
小鱼儿发布了新的文献求助10
11秒前
佳佳应助单纯天晴采纳,获得20
11秒前
orixero应助march采纳,获得10
13秒前
Erhei发布了新的文献求助10
14秒前
QQWQEQRQ完成签到,获得积分10
14秒前
赘婿应助RosyBai采纳,获得10
14秒前
kyo发布了新的文献求助30
14秒前
TH完成签到,获得积分10
15秒前
15秒前
16秒前
SYLH应助LaInh采纳,获得10
17秒前
yqf完成签到,获得积分10
17秒前
lmy完成签到 ,获得积分10
18秒前
21秒前
赘婿应助xusuizi采纳,获得10
22秒前
SYLH应助LaInh采纳,获得10
23秒前
24秒前
万能图书馆应助眼镜采纳,获得10
24秒前
28秒前
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388