电解质
材料科学
粒径
化学工程
电化学
溶解
电池(电)
多孔性
水溶液
复合材料
电极
化学
有机化学
物理化学
工程类
功率(物理)
物理
量子力学
作者
Jieshuangyang Chen,Rongyu Deng,Jinwei Zhou,Ziang Jiang,Mingzhi Qian,Feixiang Wu
标识
DOI:10.1002/batt.202400404
摘要
Abstract The presence of free water molecules in the aqueous electrolyte leads to serious side reactions at the interface, easy dissolution of the cathode material, and uncontrolled growth of zinc dendrites in Zn‐ion batteries, which hinders their practical applications. Here, we propose a type of SiO 2 ‐based soggy‐sand electrolyte (ZnSO 4 +MnSO 4 electrolyte with SiO 2 , SiO 2 ‐ZMSO 4 ) and focus on the effect of the SiO 2 nanoparticle size on the performance of soggy‐sand electrolyte. It is found that SiO 2 with smaller nanoparticle size provides higher porosity, and the SiO 2 network‐formed can effectively trap the free water in the electrolyte, which increases the ionic conductivity of electrolyte, widens working voltage window, and decreases the internal resistance of batteries. As a result, the Zn//MnO 2 batteries with 20 nm SiO 2 ‐based soggy‐sand electrolyte show stable cycling performance and rate capacities. The specific capacity of the battery can be maintained at 198.5 mAh g −1 after 1200 cycles at 1 A g −1 without capacity degradation. The specific capacity can be increased by 100 mAh g −1 even at a high rate of 5 A g −1 . This study provides the rule of particle selection for the development of aqueous soggy‐sand electrolytes used in aqueous rechargeable batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI