亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning to Discriminate Arteritic From Nonarteritic Ischemic Optic Neuropathy on Color Images

医学 前部缺血性视神经病变 巨细胞动脉炎 眼底(子宫) 缺血性视神经病变 眼科 视神经病变 视盘 接收机工作特性 人工智能 视神经 血管炎 疾病 视网膜 内科学 计算机科学
作者
Ayse Gungor,Raymond P. Najjar,Steffen Hamann,Zhiqun Tang,Wolf A. Lagrèze,Riccardo Sadun,Kanchalika Sathianvichitr,Marc Dinkin,Cristiano Oliveira,Anfei Li,Federico Sadun,Andrew R. Carey,Walid Bouthour,Mung Yan Lin,Jing-Liang Loo,Neil R. Miller,Nancy J. Newman,Valérie Biousse,Dan Miléa,Axel Petzold,Philippe Gohier,Ajay Patil,Tanyatuth Padungkiatsagul,Yanin Suwan,Kavin Vanikieti,Piero Barboni,Valério Carelli,Chiara La Morgia,Marie-Bénédicte Rougier,Fiona Costello,Étienne Bénard-Séguin,Leonard Milea,Ambika Selvakumar,Pedro Fonseca,Michael Stormly Hansen,Sebastian Küchlin,Navid Farassat,Nicolae Sanda,Gabriele Thumann,Christophe Chiquet,Hui Yang,Carol Y. Cheung,Carmen Chan,Makoto Nakamura,Fumio Takano,Thi Hà Châu Tran,Neringa Jurkutė,Patrick Yu‐Wai‐Man,Richard C. Kho,Jost B. Jonas,Luis J. Mejico,C. Clermont-Vignal,Raoul Kanav Khanna,C. Lamirel,Valérie Touitou,John J. Chen,Jeong‐Min Hwang,Hee Kyung Yang,Donghee Kim,Tin Aung,Ecosse L. Lamoureux,Leopold Schmetterer,C. Leng,Michaël J. A. Girard,Clare L. Fraser,Masoud Aghsaei Fard,Jonathan A. Micieli
出处
期刊:JAMA Ophthalmology [American Medical Association]
标识
DOI:10.1001/jamaophthalmol.2024.4269
摘要

Importance Prompt and accurate diagnosis of arteritic anterior ischemic optic neuropathy (AAION) from giant cell arteritis and other systemic vasculitis can contribute to preventing irreversible vision loss from these conditions. Its clinical distinction from nonarteritic anterior ischemic optic neuropathy (NAION) can be challenging, especially when systemic symptoms are lacking or laboratory markers of the disease are not reliable. Objective To develop, train, and test a deep learning system (DLS) to discriminate AAION from NAION on color fundus images during the acute phase. Design, Setting, and Participants This was an international study including color fundus images of 961 eyes of 802 patients with confirmed AAION and NAION. Training was performed using images from 21 expert neuro-ophthalmology centers in 16 countries, while external testing was performed in a cohort from 5 expert neuro-ophthalmology centers in the US and Europe. Data for training and external testing were collected from August 2018 to January 2023. A mix of deidentified images of 2 fields of view (optic disc centered and macula centered) were used. For training and internal validation, images were from 16 fundus camera models with fields of 30° to 55°. For external testing, images were from 5 fundus cameras with fields of 30° to 50°. Data were analyzed from January 2023 to January 2024. Main Outcomes and Measures The performance of the DLS was measured using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Results In the training and validation sets, 374 (54.9%) of patients were female, 301 (44.2%) were male, and 6 (0.9%) were of unknown sex; the median (range) age was 66 (23-96) years. When tested on the external dataset including 121 patients (35 [28.9%] female, 44 [36.4%] male, and 42 [34.7%] of unknown sex; median [range] age, 69 [37-89] years), the DLS achieved an AUC of 0.97 (95% CI, 0.95-0.99), a sensitivity of 91.1% (95% CI, 85.2-96.9), a specificity of 93.4% (95% CI, 91.1-98.2), and an accuracy of 92.6% (95% CI, 90.5-96.6). The accuracy of the 2 experts for classification of the same dataset was 74.3% (95% CI, 66.7-81.9) and 81.6% (95% CI, 74.8-88.4), respectively. Conclusions and Relevance A DLS showing disease-specific averaged class-activation maps had greater than 90% accuracy at discriminating between acute AAION from NAION on color fundus images, at the eye level, without any clinical or biomarker information. A DLS that identifies AAION could improve clinical decision-making, potentially reducing the risk of misdiagnosis and improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiubo128完成签到,获得积分10
11秒前
完美世界应助疯疯采纳,获得10
12秒前
傅夜山发布了新的文献求助10
15秒前
fuueer完成签到 ,获得积分10
16秒前
xiubo128完成签到,获得积分10
19秒前
w33发布了新的文献求助10
19秒前
22秒前
疯疯发布了新的文献求助10
28秒前
mengyuhuan完成签到 ,获得积分0
1分钟前
1分钟前
Puan应助科研通管家采纳,获得10
1分钟前
Puan应助科研通管家采纳,获得10
1分钟前
于是乎完成签到 ,获得积分10
1分钟前
FashionBoy应助gujianhua采纳,获得10
1分钟前
SciGPT应助热情紫丝采纳,获得10
2分钟前
2分钟前
gujianhua发布了新的文献求助10
2分钟前
无情的瑾瑜完成签到 ,获得积分10
2分钟前
2分钟前
Puan应助科研通管家采纳,获得10
3分钟前
caca完成签到,获得积分10
3分钟前
落后的西牛完成签到 ,获得积分10
4分钟前
SciGPT应助llllly采纳,获得10
4分钟前
4分钟前
llllly完成签到,获得积分10
4分钟前
4分钟前
llllly发布了新的文献求助10
4分钟前
凶狠的盛男完成签到 ,获得积分10
4分钟前
5分钟前
牛少辉发布了新的文献求助10
5分钟前
Puan应助科研通管家采纳,获得10
5分钟前
NNN7完成签到,获得积分10
5分钟前
烟花应助狄绮采纳,获得10
5分钟前
5分钟前
狄绮发布了新的文献求助10
5分钟前
俭朴蜜蜂完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
qiu完成签到,获得积分10
5分钟前
CodeCraft应助土豆金采纳,获得10
6分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939204
捐赠科研通 2483045
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627