Determining sensor geometry and gain in a wearable MEG system

可穿戴计算机 几何学 计算机科学 物理 数学 嵌入式系统
作者
Ryan M. Hill,G. Rivero,Ashley J. Tyler,Holly Schofield,Cody Doyle,James Osborne,David Bobela,Lukas Rier,J. M. Gibson,Zoe Tanner,Elena Boto,Richard Bowtell,Matthew J. Brookes,Vishal Shah,Niall Holmes
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08718
摘要

Optically pumped magnetometers (OPMs) are compact and lightweight sensors that can measure magnetic fields generated by current flow in neuronal assemblies in the brain. Such sensors enable construction of magnetoencephalography (MEG) instrumentation, with significant advantages over conventional MEG devices including adaptability to head size, enhanced movement tolerance, lower complexity and improved data quality. However, realising the potential of OPMs depends on our ability to perform system calibration, which means finding sensor locations, orientations, and the relationship between the sensor output and magnetic field (termed sensor gain). Such calibration is complex in OPMMEG since, for example, OPM placement can change from subject to subject (unlike in conventional MEG where sensor locations or orientations are fixed). Here, we present two methods for calibration, both based on generating well-characterised magnetic fields across a sensor array. Our first device (the HALO) is a head mounted system that generates dipole like fields from a set of coils. Our second (the matrix coil (MC)) generates fields using coils embedded in the walls of a magnetically shielded room. Our results show that both methods offer an accurate means to calibrate an OPM array (e.g. sensor locations within 2 mm of the ground truth) and that the calibrations produced by the two methods agree strongly with each other. When applied to data from human MEG experiments, both methods offer improved signal to noise ratio after beamforming suggesting that they give calibration parameters closer to the ground truth than factory settings and presumed physical sensor coordinates and orientations. Both techniques are practical and easy to integrate into real world MEG applications. This advances the field significantly closer to the routine use of OPMs for MEG recording.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯完成签到,获得积分20
刚刚
勤奋的灯发布了新的文献求助10
1秒前
利好完成签到 ,获得积分10
1秒前
科研通AI6应助ash采纳,获得10
1秒前
打打应助ash采纳,获得10
1秒前
嘻嘻完成签到 ,获得积分10
2秒前
锅嘚硬发布了新的文献求助10
2秒前
拼搏的飞薇完成签到,获得积分10
2秒前
无奈凉面完成签到,获得积分10
3秒前
耳朵儿歌发布了新的文献求助100
3秒前
Proddy完成签到,获得积分10
3秒前
4秒前
大模型应助文静盈采纳,获得10
4秒前
sia完成签到,获得积分10
4秒前
饱满以松发布了新的文献求助10
4秒前
4秒前
小鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
科研通AI6应助洁净的千凡采纳,获得10
5秒前
317完成签到,获得积分10
5秒前
lin完成签到 ,获得积分10
5秒前
6秒前
輕語完成签到,获得积分10
7秒前
7秒前
活ni的pig完成签到 ,获得积分10
7秒前
科研小菜狗完成签到 ,获得积分10
7秒前
zyx完成签到,获得积分10
7秒前
7秒前
7秒前
小曦仔完成签到,获得积分10
8秒前
PPP应助morii采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
美好的小白菜完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034