Determining sensor geometry and gain in a wearable MEG system

可穿戴计算机 几何学 计算机科学 物理 数学 嵌入式系统
作者
Ryan M. Hill,G. Rivero,Ashley J. Tyler,Holly Schofield,Cody Doyle,James Osborne,David Bobela,Lukas Rier,J. M. Gibson,Zoe Tanner,Elena Boto,Richard Bowtell,Matthew J. Brookes,Vishal Shah,Niall Holmes
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08718
摘要

Optically pumped magnetometers (OPMs) are compact and lightweight sensors that can measure magnetic fields generated by current flow in neuronal assemblies in the brain. Such sensors enable construction of magnetoencephalography (MEG) instrumentation, with significant advantages over conventional MEG devices including adaptability to head size, enhanced movement tolerance, lower complexity and improved data quality. However, realising the potential of OPMs depends on our ability to perform system calibration, which means finding sensor locations, orientations, and the relationship between the sensor output and magnetic field (termed sensor gain). Such calibration is complex in OPMMEG since, for example, OPM placement can change from subject to subject (unlike in conventional MEG where sensor locations or orientations are fixed). Here, we present two methods for calibration, both based on generating well-characterised magnetic fields across a sensor array. Our first device (the HALO) is a head mounted system that generates dipole like fields from a set of coils. Our second (the matrix coil (MC)) generates fields using coils embedded in the walls of a magnetically shielded room. Our results show that both methods offer an accurate means to calibrate an OPM array (e.g. sensor locations within 2 mm of the ground truth) and that the calibrations produced by the two methods agree strongly with each other. When applied to data from human MEG experiments, both methods offer improved signal to noise ratio after beamforming suggesting that they give calibration parameters closer to the ground truth than factory settings and presumed physical sensor coordinates and orientations. Both techniques are practical and easy to integrate into real world MEG applications. This advances the field significantly closer to the routine use of OPMs for MEG recording.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助林一采纳,获得10
刚刚
刚刚
坚强小熊猫完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
zyl关闭了zyl文献求助
1秒前
今后应助追寻的飞柏采纳,获得10
2秒前
lemon完成签到,获得积分10
3秒前
3秒前
Twonej举报Dxxxjx求助涉嫌违规
4秒前
Lucky完成签到,获得积分10
4秒前
靓丽的怜雪完成签到,获得积分20
4秒前
情怀应助化学学渣采纳,获得10
4秒前
FashionBoy应助Yuanyuan采纳,获得10
5秒前
one发布了新的文献求助10
5秒前
6秒前
梓曦发布了新的文献求助10
6秒前
优美紫槐发布了新的文献求助10
6秒前
6秒前
彭于晏应助123456采纳,获得10
7秒前
8秒前
多情新蕾发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
萧瑟秋风今又是完成签到 ,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
SciGPT应助lyx采纳,获得10
12秒前
林一发布了新的文献求助10
12秒前
13秒前
旺仔糖发布了新的文献求助10
14秒前
碧蓝丹烟完成签到 ,获得积分10
14秒前
无极微光应助尖叫尖叫采纳,获得20
14秒前
上官若男应助优美紫槐采纳,获得10
15秒前
晨光发布了新的文献求助10
15秒前
贱小贱完成签到,获得积分0
16秒前
16秒前
暴走章鱼完成签到,获得积分10
17秒前
雷欣欣完成签到 ,获得积分10
17秒前
万能图书馆应助西西采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729634
求助须知:如何正确求助?哪些是违规求助? 5319737
关于积分的说明 15317209
捐赠科研通 4876640
什么是DOI,文献DOI怎么找? 2619450
邀请新用户注册赠送积分活动 1569001
关于科研通互助平台的介绍 1525547