Determining sensor geometry and gain in a wearable MEG system

可穿戴计算机 几何学 计算机科学 物理 数学 嵌入式系统
作者
Ryan M. Hill,G. Rivero,Ashley J. Tyler,Holly Schofield,Cody Doyle,James Osborne,David Bobela,Lukas Rier,J. M. Gibson,Zoe Tanner,Elena Boto,Richard Bowtell,Matthew J. Brookes,Vishal Shah,Niall Holmes
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08718
摘要

Optically pumped magnetometers (OPMs) are compact and lightweight sensors that can measure magnetic fields generated by current flow in neuronal assemblies in the brain. Such sensors enable construction of magnetoencephalography (MEG) instrumentation, with significant advantages over conventional MEG devices including adaptability to head size, enhanced movement tolerance, lower complexity and improved data quality. However, realising the potential of OPMs depends on our ability to perform system calibration, which means finding sensor locations, orientations, and the relationship between the sensor output and magnetic field (termed sensor gain). Such calibration is complex in OPMMEG since, for example, OPM placement can change from subject to subject (unlike in conventional MEG where sensor locations or orientations are fixed). Here, we present two methods for calibration, both based on generating well-characterised magnetic fields across a sensor array. Our first device (the HALO) is a head mounted system that generates dipole like fields from a set of coils. Our second (the matrix coil (MC)) generates fields using coils embedded in the walls of a magnetically shielded room. Our results show that both methods offer an accurate means to calibrate an OPM array (e.g. sensor locations within 2 mm of the ground truth) and that the calibrations produced by the two methods agree strongly with each other. When applied to data from human MEG experiments, both methods offer improved signal to noise ratio after beamforming suggesting that they give calibration parameters closer to the ground truth than factory settings and presumed physical sensor coordinates and orientations. Both techniques are practical and easy to integrate into real world MEG applications. This advances the field significantly closer to the routine use of OPMs for MEG recording.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤的凝海完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
18秒前
芙瑞完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
啦啦啦啦发布了新的文献求助10
23秒前
Young完成签到 ,获得积分10
25秒前
胡可完成签到 ,获得积分10
26秒前
27秒前
28秒前
Adc应助科研通管家采纳,获得10
32秒前
Adc应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
量子星尘发布了新的文献求助10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
Adc应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
量子星尘发布了新的文献求助10
33秒前
张图门完成签到 ,获得积分10
38秒前
称心凡霜发布了新的文献求助10
43秒前
45秒前
nav完成签到 ,获得积分10
49秒前
阿良完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
量子星尘发布了新的文献求助10
50秒前
小白完成签到 ,获得积分10
51秒前
54秒前
Jiro完成签到,获得积分10
57秒前
57秒前
我爱学习发布了新的文献求助10
59秒前
称心凡霜完成签到,获得积分10
1分钟前
吃吃吃不敢吃完成签到 ,获得积分10
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
Cat发布了新的文献求助10
1分钟前
莨菪发布了新的文献求助10
1分钟前
菓小柒完成签到 ,获得积分10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715405
求助须知:如何正确求助?哪些是违规求助? 5233984
关于积分的说明 15274352
捐赠科研通 4866257
什么是DOI,文献DOI怎么找? 2612849
邀请新用户注册赠送积分活动 1563009
关于科研通互助平台的介绍 1520398