亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determining sensor geometry and gain in a wearable MEG system

可穿戴计算机 几何学 计算机科学 物理 数学 嵌入式系统
作者
Ryan M. Hill,G. Rivero,Ashley J. Tyler,Holly Schofield,Cody Doyle,James Osborne,David Bobela,Lukas Rier,J. M. Gibson,Zoe Tanner,Elena Boto,Richard Bowtell,Matthew J. Brookes,Vishal Shah,Niall Holmes
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08718
摘要

Optically pumped magnetometers (OPMs) are compact and lightweight sensors that can measure magnetic fields generated by current flow in neuronal assemblies in the brain. Such sensors enable construction of magnetoencephalography (MEG) instrumentation, with significant advantages over conventional MEG devices including adaptability to head size, enhanced movement tolerance, lower complexity and improved data quality. However, realising the potential of OPMs depends on our ability to perform system calibration, which means finding sensor locations, orientations, and the relationship between the sensor output and magnetic field (termed sensor gain). Such calibration is complex in OPMMEG since, for example, OPM placement can change from subject to subject (unlike in conventional MEG where sensor locations or orientations are fixed). Here, we present two methods for calibration, both based on generating well-characterised magnetic fields across a sensor array. Our first device (the HALO) is a head mounted system that generates dipole like fields from a set of coils. Our second (the matrix coil (MC)) generates fields using coils embedded in the walls of a magnetically shielded room. Our results show that both methods offer an accurate means to calibrate an OPM array (e.g. sensor locations within 2 mm of the ground truth) and that the calibrations produced by the two methods agree strongly with each other. When applied to data from human MEG experiments, both methods offer improved signal to noise ratio after beamforming suggesting that they give calibration parameters closer to the ground truth than factory settings and presumed physical sensor coordinates and orientations. Both techniques are practical and easy to integrate into real world MEG applications. This advances the field significantly closer to the routine use of OPMs for MEG recording.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caspar发布了新的文献求助10
2秒前
YY关注了科研通微信公众号
16秒前
生动的沛白完成签到 ,获得积分10
34秒前
34秒前
null应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
汉堡包应助科研通管家采纳,获得10
35秒前
39秒前
43秒前
科研通AI6.1应助一见喜采纳,获得10
45秒前
YY发布了新的文献求助10
46秒前
火火完成签到 ,获得积分10
51秒前
Lampe完成签到,获得积分10
53秒前
Chere20200628完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小宇完成签到,获得积分10
1分钟前
一见喜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Chris完成签到 ,获得积分0
1分钟前
1分钟前
wure10完成签到 ,获得积分10
1分钟前
YH完成签到,获得积分10
1分钟前
FODCOC完成签到,获得积分10
2分钟前
Elthrai完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
YY完成签到,获得积分10
2分钟前
打工人发布了新的文献求助10
2分钟前
张杰发布了新的文献求助10
2分钟前
汉堡包应助科研菜鸡采纳,获得10
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739520
求助须知:如何正确求助?哪些是违规求助? 5386817
关于积分的说明 15339751
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624069
邀请新用户注册赠送积分活动 1572769
关于科研通互助平台的介绍 1529575