Determining sensor geometry and gain in a wearable MEG system

可穿戴计算机 几何学 计算机科学 物理 数学 嵌入式系统
作者
Ryan M. Hill,G. Rivero,Ashley J. Tyler,Holly Schofield,Cody Doyle,James Osborne,David Bobela,Lukas Rier,J. M. Gibson,Zoe Tanner,Elena Boto,Richard Bowtell,Matthew J. Brookes,Vishal Shah,Niall Holmes
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08718
摘要

Optically pumped magnetometers (OPMs) are compact and lightweight sensors that can measure magnetic fields generated by current flow in neuronal assemblies in the brain. Such sensors enable construction of magnetoencephalography (MEG) instrumentation, with significant advantages over conventional MEG devices including adaptability to head size, enhanced movement tolerance, lower complexity and improved data quality. However, realising the potential of OPMs depends on our ability to perform system calibration, which means finding sensor locations, orientations, and the relationship between the sensor output and magnetic field (termed sensor gain). Such calibration is complex in OPMMEG since, for example, OPM placement can change from subject to subject (unlike in conventional MEG where sensor locations or orientations are fixed). Here, we present two methods for calibration, both based on generating well-characterised magnetic fields across a sensor array. Our first device (the HALO) is a head mounted system that generates dipole like fields from a set of coils. Our second (the matrix coil (MC)) generates fields using coils embedded in the walls of a magnetically shielded room. Our results show that both methods offer an accurate means to calibrate an OPM array (e.g. sensor locations within 2 mm of the ground truth) and that the calibrations produced by the two methods agree strongly with each other. When applied to data from human MEG experiments, both methods offer improved signal to noise ratio after beamforming suggesting that they give calibration parameters closer to the ground truth than factory settings and presumed physical sensor coordinates and orientations. Both techniques are practical and easy to integrate into real world MEG applications. This advances the field significantly closer to the routine use of OPMs for MEG recording.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinkdon完成签到,获得积分10
刚刚
5477完成签到,获得积分10
刚刚
1秒前
lins完成签到,获得积分20
1秒前
Orange应助cindy采纳,获得10
2秒前
2秒前
phz完成签到,获得积分10
2秒前
3秒前
所所应助积极的凌波采纳,获得10
3秒前
SV关注了科研通微信公众号
3秒前
白蕲完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助20
4秒前
柔弱凡松发布了新的文献求助10
5秒前
yyds完成签到,获得积分10
6秒前
认真子默完成签到,获得积分10
6秒前
6秒前
6秒前
mylian完成签到,获得积分10
6秒前
8秒前
8秒前
SY发布了新的文献求助10
8秒前
可爱小哪吒完成签到,获得积分10
8秒前
斯文败类应助doudou采纳,获得10
9秒前
苹果完成签到,获得积分10
9秒前
9秒前
一颗咸蛋黄完成签到 ,获得积分20
11秒前
打打应助5477采纳,获得10
11秒前
灵巧坤发布了新的文献求助30
11秒前
11秒前
小猴完成签到,获得积分10
12秒前
Raymond应助NANA采纳,获得10
13秒前
Sean完成签到 ,获得积分10
13秒前
13秒前
无情山水发布了新的文献求助10
14秒前
锦纹完成签到,获得积分10
14秒前
南桥发布了新的文献求助10
14秒前
14秒前
伶俐的书白完成签到,获得积分10
15秒前
科研通AI5应助威武诺言采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762