Cardiac Matrix-Derived Granular Hydrogel Enhances Cell Function in 3D Culture

材料科学 自愈水凝胶 基质(化学分析) 功能(生物学) 细胞培养 化学工程 复合材料 纳米技术 高分子化学 细胞生物学 生物 工程类 遗传学
作者
Rubia Shaik,Jacob Brown,Jiazhu Xu,Rabina Lamichhane,Yong Wang,Yi Hong,Ge Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c12871
摘要

Hydrogels derived from decellularized porcine myocardial matrix have demonstrated significant potential as therapeutic delivery platforms for promoting cardiac repair after injury. Our previous study developed a fibrin-enriched cardiac matrix hydrogel to enhance its angiogenic capacities. However, the bulk hydrogel structure may limit their full potential in cell delivery. Recently, granular hydrogels have emerged as a promising class of biomaterials, offering unique features such as a highly interconnected porous structure that facilitates nutrient diffusion and enhances cell viability. Several techniques have been developed for fabricating various types of granular hydrogels, among which extrusion fragmentation is particularly appealing due to its adaptability to many types of hydrogels, low cost, and high scalability. In this study, we first confirmed the effects of the bulk cardiac matrix hydrogel on the viability of encapsulated human umbilical vein endothelial cells and human mesenchymal stem cells. We then tested the feasibility of producing granular hydrogels from both cardiac matrix and fibrin-enriched cardiac matrix through cellular cross-linking of microgels fabricated by extrusion fragmentation. Afterward, we examined the roles of the produced granular hydrogels in the embedded cells and cell spheroids. Our in vitro data demonstrate that cardiac matrix-derived granular hydrogels support optimal viability of encapsulated cells and promote sprouting of human mesenchymal stem cell spheroids. Additionally, granular hydrogel derived from fibrin-enriched cardiac matrix accelerates angiogenic sprouting of embedded human mesenchymal stem cell spheroids. The results obtained from this study lay an important foundation for the future exploration of using cardiac matrix-derived granular hydrogels for cardiac cell therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
善学以致用应助胆大心细采纳,获得10
3秒前
3秒前
3秒前
诚心清涟发布了新的文献求助10
4秒前
4秒前
4秒前
xiaohuihui完成签到,获得积分10
5秒前
冲塔亚德发布了新的文献求助10
5秒前
明亮无颜发布了新的文献求助10
5秒前
5秒前
5秒前
WS完成签到 ,获得积分10
6秒前
Jasper应助lilaiyang采纳,获得10
7秒前
科研通AI2S应助111采纳,获得10
7秒前
黄玉林完成签到,获得积分10
7秒前
肥皂发布了新的文献求助10
7秒前
Simen发布了新的文献求助20
8秒前
8秒前
9秒前
wxwx发布了新的文献求助10
10秒前
胖虎不胖发布了新的文献求助10
10秒前
野性的枕头完成签到 ,获得积分10
12秒前
raycee应助洁净如柏采纳,获得10
12秒前
胆大心细完成签到,获得积分20
12秒前
12秒前
任性亚男应助老王采纳,获得10
12秒前
14秒前
15秒前
榕俊完成签到,获得积分10
15秒前
呆瓜发布了新的文献求助10
16秒前
缓慢谷雪发布了新的文献求助10
16秒前
17秒前
niuhulushi发布了新的文献求助10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570