Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients

列线图 医学 比例危险模型 肿瘤科 队列 回顾性队列研究 监测、流行病学和最终结果 肝细胞癌 内科学 生存分析 预后变量 预测模型 流行病学 癌症登记处 总体生存率
作者
Jiaxuan Sun,Lei Huang,Yahui Liu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9) 被引量:2
标识
DOI:10.1002/jgm.3732
摘要

Abstract Objectives This study aims to develop and validate machine learning–based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for this cohort. Design Utilizing a retrospective design, this investigation leverages data extracted from the Surveillance, Epidemiology, and End Results (SEER) database, specifically the January 2024 subset, to conduct the analysis. Participants The study cohort consists of 15,775 patients diagnosed with HCC as identified within the SEER database, spanning 2016 to 2020. Method In the construction of the diagnostic model, recursive feature elimination (RFE) is employed for variable selection, incorporating five critical predictors: age, tumor size, radiation therapy, T‐stage, and serum alpha‐fetoprotein (AFP) levels. These variables are the foundation for a stacking ensemble model, which is further elucidated through Shapley Additive Explanations (SHAP). Conversely, the prognostic model is crafted utilizing stepwise backward regression to select pertinent variables, including chemotherapy, radiation therapy, tumor size, and age. This model culminates in the development of a prognostic nomogram, underpinned by the Cox proportional hazards model. Main outcome measures The outcome of the diagnostic model is the occurrence of DLNM in patients. The outcome of the prognosis model is determined by survival time and survival status. Results The integrated model developed based on stacking demonstrates good predictive performance and high interpretative variability and differentiation. The area under the curve (AUC) in the training set is 0.767, while the AUC in the validation set is 0.768. The nomogram, constructed using the Cox model, also demonstrates consistent and strong predictive capabilities. At the same time, we recognized elements that have a substantial impact on DLNM and the prognosis and extensively discussed their significance in the model and clinical practice. Conclusion Our study identified key predictive factors for DLNM and elucidated significant prognostic indicators for HCC patients with DLNM. These findings provide clinicians with valuable tools to accurately identify high‐risk individuals for DLNM and conduct more precise risk stratification for this patient subgroup, potentially improving management strategies and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色蘑菇完成签到,获得积分10
刚刚
1秒前
1秒前
SYLH应助lqkcqmu采纳,获得30
1秒前
2秒前
TANG完成签到,获得积分10
2秒前
3秒前
pm完成签到,获得积分20
3秒前
热情铭发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Jenaloe发布了新的文献求助10
5秒前
自然1111发布了新的文献求助10
5秒前
李健的小迷弟应助哈士轩采纳,获得10
5秒前
5秒前
5秒前
Akim应助怡然嚣采纳,获得30
6秒前
顾矜应助xuexi采纳,获得10
6秒前
lone623发布了新的文献求助10
6秒前
mrz发布了新的文献求助10
6秒前
yx_cheng应助OK采纳,获得30
6秒前
7秒前
菜鸟12完成签到,获得积分20
7秒前
7秒前
20250702完成签到 ,获得积分10
7秒前
夕照古风发布了新的文献求助10
7秒前
单薄的夜南应助wangyalei采纳,获得10
7秒前
打败拖延症完成签到,获得积分10
8秒前
苹果蜗牛发布了新的文献求助10
8秒前
9秒前
Ultraman完成签到,获得积分10
9秒前
王宁发布了新的文献求助10
9秒前
十四完成签到 ,获得积分10
10秒前
LLL发布了新的文献求助10
10秒前
10秒前
开花开花发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
calm发布了新的文献求助10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620