清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients

列线图 医学 比例危险模型 肿瘤科 队列 回顾性队列研究 监测、流行病学和最终结果 肝细胞癌 内科学 生存分析 预后变量 预测模型 流行病学 癌症登记处 总体生存率
作者
Jiaxuan Sun,Lei Huang,Yahui Liu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9)
标识
DOI:10.1002/jgm.3732
摘要

Abstract Objectives This study aims to develop and validate machine learning–based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for this cohort. Design Utilizing a retrospective design, this investigation leverages data extracted from the Surveillance, Epidemiology, and End Results (SEER) database, specifically the January 2024 subset, to conduct the analysis. Participants The study cohort consists of 15,775 patients diagnosed with HCC as identified within the SEER database, spanning 2016 to 2020. Method In the construction of the diagnostic model, recursive feature elimination (RFE) is employed for variable selection, incorporating five critical predictors: age, tumor size, radiation therapy, T‐stage, and serum alpha‐fetoprotein (AFP) levels. These variables are the foundation for a stacking ensemble model, which is further elucidated through Shapley Additive Explanations (SHAP). Conversely, the prognostic model is crafted utilizing stepwise backward regression to select pertinent variables, including chemotherapy, radiation therapy, tumor size, and age. This model culminates in the development of a prognostic nomogram, underpinned by the Cox proportional hazards model. Main outcome measures The outcome of the diagnostic model is the occurrence of DLNM in patients. The outcome of the prognosis model is determined by survival time and survival status. Results The integrated model developed based on stacking demonstrates good predictive performance and high interpretative variability and differentiation. The area under the curve (AUC) in the training set is 0.767, while the AUC in the validation set is 0.768. The nomogram, constructed using the Cox model, also demonstrates consistent and strong predictive capabilities. At the same time, we recognized elements that have a substantial impact on DLNM and the prognosis and extensively discussed their significance in the model and clinical practice. Conclusion Our study identified key predictive factors for DLNM and elucidated significant prognostic indicators for HCC patients with DLNM. These findings provide clinicians with valuable tools to accurately identify high‐risk individuals for DLNM and conduct more precise risk stratification for this patient subgroup, potentially improving management strategies and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
去去去去发布了新的文献求助10
10秒前
陳某完成签到,获得积分10
18秒前
CaoJing完成签到 ,获得积分10
45秒前
Richard完成签到 ,获得积分10
1分钟前
FUNG发布了新的文献求助10
2分钟前
ldd关闭了ldd文献求助
3分钟前
榴下晨光完成签到 ,获得积分10
3分钟前
啥时候吃火锅完成签到 ,获得积分0
3分钟前
lovelife完成签到,获得积分10
3分钟前
ldd关闭了ldd文献求助
4分钟前
Bond完成签到 ,获得积分10
4分钟前
万能图书馆应助cassie采纳,获得10
4分钟前
仿真小学生完成签到 ,获得积分10
5分钟前
kohu完成签到,获得积分10
5分钟前
ldd发布了新的文献求助10
5分钟前
宇文非笑完成签到 ,获得积分10
5分钟前
lotus完成签到,获得积分10
6分钟前
方白秋完成签到,获得积分10
7分钟前
ldd发布了新的文献求助10
8分钟前
Lucas应助翟半仙采纳,获得10
9分钟前
墨言无殇完成签到,获得积分10
10分钟前
huvy完成签到 ,获得积分10
10分钟前
内向的白玉完成签到 ,获得积分10
13分钟前
13分钟前
翟半仙发布了新的文献求助10
13分钟前
13分钟前
turui完成签到 ,获得积分10
13分钟前
jyy应助晶杰采纳,获得10
13分钟前
脑洞疼应助科研通管家采纳,获得10
14分钟前
翟半仙发布了新的文献求助20
14分钟前
fuueer完成签到 ,获得积分10
14分钟前
lixuebin完成签到 ,获得积分10
14分钟前
上官若男应助LJYang采纳,获得30
15分钟前
翟半仙完成签到,获得积分10
15分钟前
gy完成签到,获得积分10
16分钟前
华仔应助去去去去采纳,获得30
16分钟前
16分钟前
17分钟前
去去去去发布了新的文献求助30
17分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142749
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807057
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335