亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients

列线图 医学 比例危险模型 肿瘤科 队列 回顾性队列研究 监测、流行病学和最终结果 肝细胞癌 内科学 生存分析 预后变量 预测模型 流行病学 癌症登记处 总体生存率
作者
Jiaxuan Sun,Lei Huang,Yahui Liu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9): e3732-e3732 被引量:4
标识
DOI:10.1002/jgm.3732
摘要

Abstract Objectives This study aims to develop and validate machine learning–based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for this cohort. Design Utilizing a retrospective design, this investigation leverages data extracted from the Surveillance, Epidemiology, and End Results (SEER) database, specifically the January 2024 subset, to conduct the analysis. Participants The study cohort consists of 15,775 patients diagnosed with HCC as identified within the SEER database, spanning 2016 to 2020. Method In the construction of the diagnostic model, recursive feature elimination (RFE) is employed for variable selection, incorporating five critical predictors: age, tumor size, radiation therapy, T‐stage, and serum alpha‐fetoprotein (AFP) levels. These variables are the foundation for a stacking ensemble model, which is further elucidated through Shapley Additive Explanations (SHAP). Conversely, the prognostic model is crafted utilizing stepwise backward regression to select pertinent variables, including chemotherapy, radiation therapy, tumor size, and age. This model culminates in the development of a prognostic nomogram, underpinned by the Cox proportional hazards model. Main outcome measures The outcome of the diagnostic model is the occurrence of DLNM in patients. The outcome of the prognosis model is determined by survival time and survival status. Results The integrated model developed based on stacking demonstrates good predictive performance and high interpretative variability and differentiation. The area under the curve (AUC) in the training set is 0.767, while the AUC in the validation set is 0.768. The nomogram, constructed using the Cox model, also demonstrates consistent and strong predictive capabilities. At the same time, we recognized elements that have a substantial impact on DLNM and the prognosis and extensively discussed their significance in the model and clinical practice. Conclusion Our study identified key predictive factors for DLNM and elucidated significant prognostic indicators for HCC patients with DLNM. These findings provide clinicians with valuable tools to accurately identify high‐risk individuals for DLNM and conduct more precise risk stratification for this patient subgroup, potentially improving management strategies and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负者歌于途完成签到,获得积分10
2秒前
哈哈我完成签到,获得积分10
17秒前
46秒前
wearelulu完成签到,获得积分10
51秒前
Micheal完成签到 ,获得积分10
56秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
momo发布了新的文献求助30
1分钟前
1分钟前
何何发布了新的文献求助10
1分钟前
可爱的函函应助何何采纳,获得10
1分钟前
momo完成签到,获得积分10
1分钟前
Lan完成签到 ,获得积分10
2分钟前
Wei发布了新的文献求助10
2分钟前
2分钟前
哈哈发布了新的文献求助10
3分钟前
jinsijia应助科研通管家采纳,获得10
3分钟前
哈哈发布了新的文献求助10
3分钟前
计划完成签到,获得积分10
3分钟前
魔幻诗兰完成签到,获得积分10
3分钟前
NexusExplorer应助科研小贩采纳,获得10
3分钟前
3分钟前
科研小贩发布了新的文献求助10
3分钟前
热情依白应助可爱寻芹采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分0
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
王吉萍完成签到 ,获得积分10
4分钟前
gcr完成签到 ,获得积分10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
Emilia发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
千里草完成签到,获得积分10
6分钟前
lezbj99完成签到,获得积分10
6分钟前
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
xxi发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681596
求助须知:如何正确求助?哪些是违规求助? 5010963
关于积分的说明 15175878
捐赠科研通 4841127
什么是DOI,文献DOI怎么找? 2594966
邀请新用户注册赠送积分活动 1547940
关于科研通互助平台的介绍 1505973