Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients

列线图 医学 比例危险模型 肿瘤科 队列 回顾性队列研究 监测、流行病学和最终结果 肝细胞癌 内科学 生存分析 预后变量 预测模型 流行病学 癌症登记处 总体生存率
作者
Jiaxuan Sun,Lei Huang,Yahui Liu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9) 被引量:2
标识
DOI:10.1002/jgm.3732
摘要

Abstract Objectives This study aims to develop and validate machine learning–based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for this cohort. Design Utilizing a retrospective design, this investigation leverages data extracted from the Surveillance, Epidemiology, and End Results (SEER) database, specifically the January 2024 subset, to conduct the analysis. Participants The study cohort consists of 15,775 patients diagnosed with HCC as identified within the SEER database, spanning 2016 to 2020. Method In the construction of the diagnostic model, recursive feature elimination (RFE) is employed for variable selection, incorporating five critical predictors: age, tumor size, radiation therapy, T‐stage, and serum alpha‐fetoprotein (AFP) levels. These variables are the foundation for a stacking ensemble model, which is further elucidated through Shapley Additive Explanations (SHAP). Conversely, the prognostic model is crafted utilizing stepwise backward regression to select pertinent variables, including chemotherapy, radiation therapy, tumor size, and age. This model culminates in the development of a prognostic nomogram, underpinned by the Cox proportional hazards model. Main outcome measures The outcome of the diagnostic model is the occurrence of DLNM in patients. The outcome of the prognosis model is determined by survival time and survival status. Results The integrated model developed based on stacking demonstrates good predictive performance and high interpretative variability and differentiation. The area under the curve (AUC) in the training set is 0.767, while the AUC in the validation set is 0.768. The nomogram, constructed using the Cox model, also demonstrates consistent and strong predictive capabilities. At the same time, we recognized elements that have a substantial impact on DLNM and the prognosis and extensively discussed their significance in the model and clinical practice. Conclusion Our study identified key predictive factors for DLNM and elucidated significant prognostic indicators for HCC patients with DLNM. These findings provide clinicians with valuable tools to accurately identify high‐risk individuals for DLNM and conduct more precise risk stratification for this patient subgroup, potentially improving management strategies and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪者漫心发布了新的文献求助10
刚刚
Sunny完成签到 ,获得积分10
1秒前
Miley完成签到 ,获得积分10
1秒前
仄言发布了新的文献求助10
1秒前
SYLH应助yy采纳,获得10
2秒前
SYLH应助迟山采纳,获得10
2秒前
岁笑发布了新的文献求助10
2秒前
3秒前
gMT完成签到,获得积分10
3秒前
蜜桃四季春完成签到,获得积分10
3秒前
划水完成签到,获得积分10
3秒前
Lin发布了新的文献求助10
3秒前
Lucas应助Nefelibate采纳,获得10
3秒前
喜悦的秋柔完成签到,获得积分10
4秒前
reck发布了新的文献求助10
5秒前
weddcf完成签到,获得积分10
5秒前
杨行肖应助ZZY采纳,获得10
5秒前
5秒前
Salut完成签到,获得积分10
6秒前
lingjiu完成签到,获得积分10
8秒前
yoyo完成签到,获得积分10
8秒前
Sience发布了新的文献求助10
8秒前
8秒前
8秒前
rrjl完成签到,获得积分10
8秒前
顾某发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
叶子完成签到,获得积分10
10秒前
reck完成签到,获得积分10
11秒前
13秒前
14秒前
yousheng发布了新的文献求助50
14秒前
Lin完成签到,获得积分10
14秒前
14秒前
铲子发布了新的文献求助10
14秒前
16秒前
SYLH应助qyhyhn采纳,获得10
16秒前
一一发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761395
求助须知:如何正确求助?哪些是违规求助? 3305279
关于积分的说明 10133188
捐赠科研通 3019218
什么是DOI,文献DOI怎么找? 1658046
邀请新用户注册赠送积分活动 791820
科研通“疑难数据库(出版商)”最低求助积分说明 754655