Modeling non-spherical hailstones

热的 机械 阻力 气象学 航空航天工程 物理 工程类
作者
Yuzhu Lin,Matthew R. Kumjian,Joshua Soderholm,Ian M. Giammanco
出处
期刊:Journal of the Atmospheric Sciences [American Meteorological Society]
标识
DOI:10.1175/jas-d-23-0231.1
摘要

Abstract Hail research and forecasting models necessarily involve explicit or implicit – and uncertain – physical assumptions regarding hailstones’ shape, tumbling behavior, fallspeed, and thermal energy transfer. Whereas most models assume spherical hailstones, we relax this assumption by using hailstone shape data from field observations to establish empirical size-shape relationships with reasonable degrees of randomness considering hailstones’ natural shape variability, capturing the observed distribution of tri-axial ellipsoidal shapes. We also incorporate explicit, random tumbling of individual hailstones during their growth to simulate their free-falling behavior and the resultant changes in cross-sectional area (which affects growth by hydrometeor collection.) These physical attributes are incorporated in calculating hailstones’ fallspeeds, using either empirical or analytical relationships based on each hailstone’s Best and Reynolds numbers. Options for drag coefficient modification are added to emulate hailstones’ rough surfaces (lobes), which then modifies their thermal energy and vapor exchange with the environment. We investigate how applying these physical assumptions about nonspherical hail into the Penn State hail growth trajectory model, coupled with Cloud Model 1 supercell simulations, impacts hail production, and examine the reasons behind the resulting variability in hail statistics. The choice of hailstone size-mass relation and fallspeed scheme have the strongest influence on hail sizes. Using non-spherical, tumbling hailstones reduces the number of large hailstones produced. Applying shape-specific thermal energy transfer coefficients subtly increases sizes; the effects of lobes vary depending on the fallspeed scheme used. These physical assumptions, although adding complexity to modeling, can be parameterized efficiently and potentially used in microphysics schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆遥发布了新的文献求助10
1秒前
义气珩发布了新的文献求助10
1秒前
Lxxx_7发布了新的文献求助10
1秒前
万能图书馆应助Ck采纳,获得10
2秒前
繁星与北斗完成签到,获得积分10
2秒前
脑洞疼应助sai采纳,获得10
2秒前
丘比特应助xiaoziyi666采纳,获得10
2秒前
wanci应助我行我素采纳,获得10
3秒前
marinemiao发布了新的文献求助10
3秒前
111完成签到 ,获得积分10
3秒前
无辜黑夜完成签到,获得积分10
4秒前
5秒前
今夜不设防完成签到,获得积分10
5秒前
李健应助木子采纳,获得10
6秒前
爆米花发布了新的文献求助10
6秒前
6秒前
6秒前
可靠的老鼠完成签到,获得积分10
7秒前
落寞依珊应助master-f采纳,获得10
7秒前
wbh发布了新的文献求助10
8秒前
田様应助hu970采纳,获得10
8秒前
科研通AI2S应助钟是一梦采纳,获得10
8秒前
zzz完成签到,获得积分20
9秒前
好玩和有趣完成签到,获得积分10
9秒前
脂蛋白抗原完成签到,获得积分10
9秒前
9秒前
9秒前
虫虫完成签到,获得积分10
9秒前
10秒前
10秒前
喜悦的向珊完成签到,获得积分10
10秒前
10秒前
科研狗发布了新的文献求助10
10秒前
清爽绿凝发布了新的文献求助10
10秒前
10秒前
大个应助佰斯特威采纳,获得10
11秒前
JingP完成签到,获得积分10
12秒前
赘婿应助yuyu采纳,获得10
12秒前
蔡翌文完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740