亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unlocking the potential of AI: Machine learning and deep learning models for predicting carcinogenicity of chemicals

人工智能 计算机科学 机器学习 深度学习
作者
Wenjing Guo,Jie Liu,Fan Dong,Huixiao Hong
出处
期刊:Journal of Environmental Science and Health, Part A [Informa]
卷期号:: 1-28
标识
DOI:10.1080/26896583.2024.2396731
摘要

The escalating apprehension surrounding the carcinogenic potential of chemicals emphasizes the imperative need for efficient methods of assessing carcinogenicity. Conventional experimental approaches such as in vitro and in vivo assays, albeit effective, suffer from being costly and time-consuming. In response to this challenge, new alternative methodologies, notably machine learning and deep learning techniques, have attracted attention for their potential in developing carcinogenicity prediction models. This article reviews the progress in predicting carcinogenicity using various machine learning and deep learning algorithms. A comparative analysis on these developed models reveals that support vector machine, random forest, and ensemble learning are commonly preferred for their robustness and effectiveness in predicting chemical carcinogenicity. Conversely, models based on deep learning algorithms, such as feedforward neural network, convolutional neural network, graph convolutional neural network, capsule neural network, and hybrid neural networks, exhibit promising capabilities but are limited by the size of available carcinogenicity datasets. This review provides a comprehensive analysis of current machine learning and deep learning models for carcinogenicity prediction, underscoring the importance of high-quality and large datasets. These observations are anticipated to catalyze future advancements in developing effective and generalizable machine learning and deep learning models for predicting chemical carcinogenicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
胡庆余完成签到 ,获得积分10
15秒前
duts完成签到 ,获得积分10
23秒前
悦耳诗筠完成签到 ,获得积分10
38秒前
小马甲应助优雅狗采纳,获得10
39秒前
41秒前
Iusolite完成签到,获得积分10
42秒前
西门发布了新的文献求助10
49秒前
51秒前
情怀应助LSH970829采纳,获得30
52秒前
DZ发布了新的文献求助10
56秒前
Owen应助DZ采纳,获得10
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
iwaking完成签到,获得积分10
1分钟前
酷波er应助zhangzhangzhang采纳,获得10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
黯然完成签到 ,获得积分10
1分钟前
华仔应助万万陈陈采纳,获得10
1分钟前
斯文败类应助hao采纳,获得10
1分钟前
1分钟前
hao发布了新的文献求助10
1分钟前
2分钟前
Nefelibata完成签到,获得积分10
2分钟前
大琪完成签到,获得积分10
2分钟前
2分钟前
hao完成签到,获得积分10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得30
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
Limerencia完成签到,获得积分10
2分钟前
大琪发布了新的文献求助10
2分钟前
陪你长大发布了新的文献求助10
2分钟前
李爱国应助陪你长大采纳,获得10
2分钟前
2分钟前
汉堡包应助GL采纳,获得10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413289
求助须知:如何正确求助?哪些是违规求助? 3015635
关于积分的说明 8871496
捐赠科研通 2703371
什么是DOI,文献DOI怎么找? 1482215
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679927