高分辨率透射电子显微镜
加氢脱氧
催化作用
材料科学
异丁醇
化学工程
喷气燃料
煅烧
X射线光电子能谱
核化学
透射电子显微镜
纳米技术
化学
有机化学
选择性
丁香酚
工程类
作者
G. Abdulkareem-Alsultan,Salma Samidin,N. Asikin-Mijan,Hwei Voon Lee,Hwai Chyuan Ong,Siow Hwa Teo,Tonni Agustiono Kurniawan,Nur Athirah Adzahar,Noor Alomari,Yun Hin Taufiq–Yap
标识
DOI:10.1002/cplu.202400368
摘要
This study focuses on the sustainable production of bio‐jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Properties of two spraying synthesis methods (in situ and ex situ metal doping) with different platinum (Pt) loading percentages. The catalyst was characterised using various techniques such as XAS, X‐ray photoelectron spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy (HRTEM), field‐emission scanning electron microscopy (FESEM) and thermogravimetric analysis. The HRTEM and FESEM results show the successful preparation of a spherical nanoparticle doped over activated carbon, and Pt was dispersed on the outer shell of the particles. The catalytic HDO of IE showed a high yield and conversion as follows: IE conversion of 100%, liquid‐phase mass balance of 95.92%, dihydroeugenol conversion of 99.32%, propylcyclohexane yield of 88.94% and HYD yield of 76.19%. Moreover, the catalyst exhibited high reusability with low metal leaching and high coke resistance for 10 cycles. The catalyst was evaluated in a continuous flow reactor for 100 h at different reaction temperatures, and interestingly, the catalyst showed low deactivation with a high half‐time.
科研通智能强力驱动
Strongly Powered by AbleSci AI