Evaluating the Suitability of Linear and Nonlinear Regression Approaches for the Langmuir Adsorption Model as Applied toward Biomass-Based Adsorbents: Testing Residuals and Assessing Model Validity

非线性回归 朗缪尔 活性炭 数学 线性回归 吸附 非线性系统 化学 统计 回归分析 计量经济学 应用数学 物理 有机化学 量子力学
作者
Ashley P. Mikolajczyk,Dhan Lord B. Fortela,J. Calvin Berry,William M. Chirdon,Rafael Hernández,Daniel Dianchen Gang,Mark E. Zappi
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (39): 20428-20442 被引量:1
标识
DOI:10.1021/acs.langmuir.4c01786
摘要

Regression analysis is a powerful tool in adsorption studies. Researchers often favor linear regression for its simplicity when fitting isotherm models, such as the Langmuir equation. Validating regression assumptions is crucial to ensure that the model accurately represents the data and allows appropriate inferences. This study provides a detailed examination of assumption checking in the context of adsorption studies while simultaneously evaluating the robustness of linear regression methods for fitting the Langmuir equation to isotherm data from 2,4-dichlorophenol (DCP) adsorption onto various biomass-based adsorbents and activated carbon. Different linearized Langmuir equations (Hanes-Woolf, Lineweaver-Burk, Eadie-Hofstee, and Scatchard) were compared to nonlinear regression, and each method was validated by rigorous residual checking. This included visual plots of residuals as well as statistical tests, including the Durbin-Watson test for autocorrelation (independence), the Shapiro-Wilk test for normality, and the White test for homoscedasticity. Key findings indicate that the Hanes-Woolf (type 1) and Lineweaver-Burk (type 2) linearizations were the best for most biomass adsorbents studied and that Eadie-Hofstee (type 3) and Scatchard (type 4) were generally invalid due to the negative parameters or assumption violations. For activated carbon, all linearization methods were unsuitable due to independence violations. In the case of nonlinear regression, there were no major assumption violations for all of the adsorbents. Symbolic regression identified the Langmuir equation only for activated carbon (AC). This study revealed shortcomings in relying solely on linearized Langmuir models. A proposed workflow recommends using nonlinear or weighted nonlinear regression, starting with Hanes-Woolf or Lineweaver-Burk linearization results as initial values for parameter estimation. If assumptions remain violated with nonlinear techniques, novel methods such as symbolic regression should be employed. This advanced regression technique can improve adsorption models' accuracy and predictive behavior without the stringent need for assumption checking. Symbolic regression can also aid in understanding mechanisms of novel adsorbents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助脑子大聪明采纳,获得10
1秒前
慕青应助Csene采纳,获得10
2秒前
3秒前
Arthur完成签到 ,获得积分10
4秒前
chancewong发布了新的文献求助10
4秒前
4秒前
ssf完成签到,获得积分10
4秒前
研友_VZG7GZ应助szfan123采纳,获得10
5秒前
6秒前
赵乂发布了新的文献求助10
7秒前
Ace完成签到,获得积分10
7秒前
zhangyu应助曹宏达采纳,获得10
8秒前
12秒前
AUK完成签到,获得积分10
13秒前
apoptoxin4896完成签到,获得积分10
15秒前
AUK发布了新的文献求助10
16秒前
阿旭完成签到 ,获得积分10
16秒前
机灵剑通发布了新的文献求助10
16秒前
17秒前
17秒前
chancewong完成签到,获得积分10
18秒前
20秒前
21秒前
流星也醉酒完成签到 ,获得积分20
23秒前
充电宝应助像风一样啊采纳,获得10
24秒前
云舒发布了新的文献求助10
25秒前
江月渡完成签到,获得积分10
25秒前
fatcat发布了新的文献求助30
27秒前
kk完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
万能图书馆应助Vincent1990采纳,获得10
32秒前
34秒前
谢俏艳完成签到,获得积分10
34秒前
35秒前
35秒前
guozizi发布了新的文献求助10
36秒前
善学以致用应助整齐无声采纳,获得10
36秒前
张占完成签到,获得积分0
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712