周动力
复合材料
材料科学
纤维
卷积神经网络
本构方程
结构工程
有限元法
计算机科学
人工智能
连续介质力学
工程类
机械
物理
作者
Binbin Yin,Jiasheng Huang,Weikang Sun
标识
DOI:10.1016/j.cma.2024.117309
摘要
Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI