Peridynamics-fueled convolutional neural network for predicting mechanical constitutive behaviors of fiber reinforced composites

周动力 复合材料 材料科学 纤维 卷积神经网络 本构方程 结构工程 有限元法 计算机科学 人工智能 连续介质力学 工程类 机械 物理
作者
Binbin Yin,Jiasheng Huang,Weikang Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:431: 117309-117309 被引量:2
标识
DOI:10.1016/j.cma.2024.117309
摘要

Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东风完成签到,获得积分10
1秒前
3秒前
Jasper应助Vera采纳,获得10
4秒前
单纯龙猫完成签到,获得积分10
6秒前
6秒前
Binbin发布了新的文献求助10
7秒前
10秒前
单纯龙猫发布了新的文献求助10
10秒前
10秒前
炒菜不加氯化钠关注了科研通微信公众号
10秒前
11秒前
佳佳应助nadeem采纳,获得10
11秒前
13秒前
合适含蕾发布了新的文献求助10
13秒前
风清扬应助含着它采纳,获得10
14秒前
完美世界应助Binbin采纳,获得10
14秒前
15秒前
在水一方应助轻松的鑫采纳,获得10
16秒前
Cll完成签到 ,获得积分10
17秒前
苹果小蜜蜂完成签到,获得积分10
17秒前
阳光海云完成签到,获得积分10
17秒前
哈哈哈哈发布了新的文献求助10
17秒前
ln发布了新的文献求助10
17秒前
Jasper应助菠萝派采纳,获得10
18秒前
壮观复天完成签到 ,获得积分10
19秒前
YaHaa完成签到,获得积分10
20秒前
张香香关注了科研通微信公众号
20秒前
小蘑菇应助ZJJ采纳,获得10
20秒前
noss发布了新的文献求助10
21秒前
22秒前
23秒前
ssssxr发布了新的文献求助10
24秒前
24秒前
香蕉觅云应助北柑采纳,获得10
25秒前
大橙子完成签到,获得积分10
25秒前
悦铭完成签到,获得积分10
25秒前
英姑应助半颗橙子采纳,获得10
26秒前
来碗豆腐发布了新的文献求助10
27秒前
Guochunbao完成签到,获得积分10
28秒前
11111发布了新的文献求助30
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019