Peridynamics-fueled convolutional neural network for predicting mechanical constitutive behaviors of fiber reinforced composites

周动力 复合材料 材料科学 纤维 卷积神经网络 本构方程 结构工程 有限元法 计算机科学 人工智能 连续介质力学 工程类 机械 物理
作者
Binbin Yin,Jiasheng Huang,Weikang Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:431: 117309-117309 被引量:2
标识
DOI:10.1016/j.cma.2024.117309
摘要

Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈秋发布了新的文献求助10
刚刚
哈哈哈发布了新的文献求助30
刚刚
我是老大应助奇奇吃面采纳,获得10
1秒前
1秒前
Augusterny发布了新的文献求助50
2秒前
2秒前
2秒前
Alina1874完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
soird发布了新的文献求助10
4秒前
雨雨完成签到,获得积分20
5秒前
陆未离发布了新的文献求助10
5秒前
我是老大应助1h1m采纳,获得10
5秒前
ang发布了新的文献求助10
6秒前
小马甲应助Gryphon采纳,获得10
6秒前
6秒前
许nana发布了新的文献求助10
7秒前
7秒前
7秒前
独特的莫言完成签到,获得积分10
8秒前
8秒前
简隋英发布了新的文献求助10
8秒前
8秒前
9秒前
rongrongrong完成签到,获得积分10
9秒前
小陈发布了新的文献求助10
9秒前
赘婿应助小晟采纳,获得10
9秒前
Lee发布了新的文献求助10
10秒前
10秒前
yr888完成签到,获得积分10
10秒前
帆蚌侠完成签到,获得积分10
11秒前
绿眼虫发布了新的文献求助10
11秒前
noodles完成签到,获得积分10
11秒前
领导范儿应助仁爱的雁芙采纳,获得10
12秒前
许nana完成签到,获得积分10
12秒前
12秒前
玖月发布了新的文献求助10
12秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283