阴极
能量密度
材料科学
能量(信号处理)
纳米技术
工程物理
计算机科学
物理
电气工程
数学
统计
工程类
作者
Kanghui Hu,Huoqiang Tang,Baoping Zheng,Yu Lei,Feng Xiong,Haoyu Li,Lang Qiu,Fang Wan,Yang Song,Benhe Zhong,Zhenguo Wu,Xiaodong Guo
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-08-29
卷期号:64 (1): e202413563-e202413563
被引量:19
标识
DOI:10.1002/anie.202413563
摘要
Abstract The Li‐rich Mn‐based cathode materials (LMRs) deliver excellent energy density and exhibit low cost, which are considered as the most promising cathode materials for the next generation lithium‐ion batteries. However, the irreversible redox reaction of the oxygen atoms directly leads to release oxygen and intensifies phase transformation. Besides, the local stress and strain will be generated due to the unit‐cell volume difference between R‐3m and C2/m phases, which continuously aggravates the collapse of secondary particles. Herein, the strong Nb 4d −O 2p −Li 2s configurations at the Li 1 sites of the TM‐layer in the C2/m phase and secondary particles with the radial arrangement of refined primary particles are designed to inhibit oxygen release and relieve lattice stress by Nb 2 O 5 treatment. Meanwhile, the preferential growth of the active {010} planes is presented to obtain an excellent transmission rate of Li + . As a result, the designed LMR delivers remarkable electrochemical properties with high discharge capacity and initial coulomb efficiency of 276 mAh g −1 and 85 % at 0.1 C, outstanding cycling retention rate of 81 % after 300 cycles. This novel crystal structure combining oxygen coordination regulation and micro‐nano scale design provides inspiration for the design of high‐performance LMRs.
科研通智能强力驱动
Strongly Powered by AbleSci AI