IdeNet: Making Neural Network Identify Camouflaged Objects Like Creatures

信息处理 计算机科学 生物 人工智能 人工神经网络 过程(计算) 对象(语法) 图像处理 信息处理机 可视化 视觉处理 鉴定(生物学) 计算机视觉 感知 模式识别(心理学) 图像(数学) 生物 操作系统 历史 考古 神经科学 自然(考古学) 植物
作者
Juwei Guan,Xiaolin Fang,Tongxin Zhu,Zhipeng Cai,Zhen Ling,Ming Yang,Junzhou Luo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4824-4839
标识
DOI:10.1109/tip.2024.3449574
摘要

Camouflaged objects often blend in with their surroundings, making the perception of a camouflaged object a more complex procedure. However, most neural-network-based methods that simulate the visual information processing pathway of creatures only roughly define the general process, which deficiently reproduces the process of identifying camouflaged objects. How to make modeled neural networks perceive camouflaged objects as effectively as creatures is a significant topic that deserves further consideration. After meticulous analysis of biological visual information processing, we propose an end-to-end prudent and comprehensive neural network, termed IdeNet, to model the critical information processing. Specifically, IdeNet divides the entire perception process into five stages: information collection, information augmentation, information filtering, information localization, and information correction and object identification. In addition, we design tailored visual information processing mechanisms for each stage, including the information augmentation module (IAM), the information filtering module (IFM), the information localization module (ILM), and the information correction module (ICM), to model the critical visual information processing and establish the inextricable association of biological behavior and visual information processing. The extensive experiments show that IdeNet outperforms state-of-the-art methods in all benchmarks, demonstrating the effectiveness of the five-stage partitioning of visual information processing pathway and the tailored visual information processing mechanisms for camouflaged object detection. Our code is publicly available at: https://github.com/whyandbecause/IdeNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
7秒前
7秒前
9秒前
10秒前
10秒前
阡陌花开发布了新的文献求助10
11秒前
11秒前
浮晨发布了新的文献求助10
12秒前
zxr完成签到,获得积分20
12秒前
jh完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
19秒前
19秒前
20秒前
英姑应助luyuran采纳,获得10
21秒前
瘦瘦安梦完成签到,获得积分10
21秒前
Inory007完成签到,获得积分10
21秒前
22秒前
23秒前
shhoing应助qcj采纳,获得10
24秒前
waiting发布了新的文献求助10
24秒前
26秒前
QinShu完成签到,获得积分10
26秒前
科研通AI6应助太想毕业了采纳,获得10
27秒前
原梦发布了新的文献求助20
27秒前
28秒前
28秒前
D16发布了新的文献求助10
29秒前
29秒前
31秒前
31秒前
Lucas应助yy771采纳,获得10
31秒前
我一进来就看到常威在打来福完成签到,获得积分10
31秒前
funnyelephant完成签到,获得积分10
32秒前
Sienna关注了科研通微信公众号
32秒前
32秒前
32秒前
MaRin完成签到,获得积分20
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989