Does Generative Artificial Intelligence Improve the Academic Achievement of College Students? A Meta-Analysis

适度 学业成绩 心理学 数学教育 学习风格 荟萃分析 样本量测定 社会心理学 统计 数学 医学 内科学
作者
Lihui Sun,Liang Zhou
出处
期刊:Journal of Educational Computing Research [SAGE]
卷期号:62 (7): 1676-1713 被引量:44
标识
DOI:10.1177/07356331241277937
摘要

The use of generative artificial intelligence (Gen-AI) to assist college students in their studies has become a trend. However, there is no academic consensus on whether Gen-AI can enhance the academic achievement of college students. Using a meta-analytic approach, this study aims to investigate the effectiveness of Gen-AI in improving the academic achievement of college students and to explore the effects of different moderating variables. A total of 28 articles (65 independent studies, 1909 participants) met the inclusion criteria for this study. The results showed that Gen-AI significantly improved college students’ academic achievement with a medium effect size (Hedges’s g = 0.533, 95% CI [0.408,0.659], p < .05). There were within-group differences in the three moderator variables, activity categories, sample size, and generated content, when the generated content was text ( g = 0.554, p < .05), and sample size of 21–40 ( g = 0.776, p < .05), the use of independent learning styles ( g = 0.600, p < .05) had the most significant improvement in college student’s academic achievement. The intervention duration, the discipline types, and the assessment tools also had a moderate positive impact on college students’ academic achievement, but there were no significant within-group differences in any of the moderating variables. This study provides a theoretical basis and empirical evidence for the scientific application of Gen-AI and the development of educational technology policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奔流的河完成签到,获得积分10
刚刚
俊逸的蜜蜂发布了新的文献求助260
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
在水一方应助xin采纳,获得10
2秒前
小马甲应助帅气一刀采纳,获得10
2秒前
鸡鱼蚝完成签到,获得积分10
2秒前
思源应助Muggle采纳,获得10
2秒前
2秒前
3秒前
简单绯完成签到,获得积分10
3秒前
Battery-Li完成签到,获得积分10
4秒前
4秒前
天天快乐应助锂离子采纳,获得10
4秒前
fanfan完成签到 ,获得积分10
4秒前
粟米发布了新的文献求助10
4秒前
好好吃饭完成签到,获得积分10
5秒前
今后应助asadman_W采纳,获得10
5秒前
5秒前
12334发布了新的文献求助10
6秒前
czcmh应助朱祥龙采纳,获得30
6秒前
我是老大应助zz采纳,获得100
6秒前
0Miles完成签到,获得积分10
6秒前
大个应助HUYAOWEI采纳,获得10
6秒前
橙子发布了新的文献求助10
6秒前
CodeCraft应助aoc采纳,获得10
6秒前
7秒前
文静的匪完成签到 ,获得积分10
7秒前
666发布了新的文献求助10
8秒前
执着的觅露完成签到 ,获得积分10
8秒前
忧心的山槐完成签到,获得积分10
8秒前
8秒前
科研通AI6应助Auba采纳,获得30
8秒前
9秒前
9秒前
堂yt发布了新的文献求助10
10秒前
液氧完成签到,获得积分10
10秒前
11秒前
YH完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132