Does Generative Artificial Intelligence Improve the Academic Achievement of College Students? A Meta-Analysis

适度 学业成绩 心理学 数学教育 学习风格 荟萃分析 样本量测定 社会心理学 统计 数学 医学 内科学
作者
Lihui Sun,Liang Zhou
出处
期刊:Journal of Educational Computing Research [SAGE Publishing]
卷期号:62 (7): 1896-1933 被引量:24
标识
DOI:10.1177/07356331241277937
摘要

The use of generative artificial intelligence (Gen-AI) to assist college students in their studies has become a trend. However, there is no academic consensus on whether Gen-AI can enhance the academic achievement of college students. Using a meta-analytic approach, this study aims to investigate the effectiveness of Gen-AI in improving the academic achievement of college students and to explore the effects of different moderating variables. A total of 28 articles (65 independent studies, 1909 participants) met the inclusion criteria for this study. The results showed that Gen-AI significantly improved college students’ academic achievement with a medium effect size (Hedges’s g = 0.533, 95% CI [0.408,0.659], p < .05). There were within-group differences in the three moderator variables, activity categories, sample size, and generated content, when the generated content was text ( g = 0.554, p < .05), and sample size of 21–40 ( g = 0.776, p < .05), the use of independent learning styles ( g = 0.600, p < .05) had the most significant improvement in college student’s academic achievement. The intervention duration, the discipline types, and the assessment tools also had a moderate positive impact on college students’ academic achievement, but there were no significant within-group differences in any of the moderating variables. This study provides a theoretical basis and empirical evidence for the scientific application of Gen-AI and the development of educational technology policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
haojiaolv完成签到,获得积分10
2秒前
3秒前
3秒前
马潇完成签到 ,获得积分20
4秒前
5秒前
xiaoshi完成签到,获得积分10
5秒前
5秒前
meta完成签到,获得积分10
6秒前
lin发布了新的文献求助10
6秒前
NexusExplorer应助周周采纳,获得10
6秒前
宁人发布了新的文献求助10
6秒前
357完成签到 ,获得积分20
7秒前
7秒前
qwe31533发布了新的文献求助30
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
强子今天读文献了嘛完成签到,获得积分10
11秒前
浮浮世世发布了新的文献求助10
11秒前
11秒前
CTtoF完成签到,获得积分10
11秒前
12秒前
huanger完成签到,获得积分0
13秒前
14秒前
harrison完成签到,获得积分20
14秒前
狂野未来发布了新的文献求助10
15秒前
花露水完成签到,获得积分20
15秒前
15秒前
16秒前
小蘑菇应助咔咔采纳,获得10
18秒前
qzp发布了新的文献求助10
18秒前
leaolf应助称心曼安采纳,获得20
18秒前
顺心的巨人完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
项目多多完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513