Does Generative Artificial Intelligence Improve the Academic Achievement of College Students? A Meta-Analysis

适度 学业成绩 心理学 数学教育 学习风格 荟萃分析 样本量测定 社会心理学 统计 数学 医学 内科学
作者
Lihui Sun,Liang Zhou
出处
期刊:Journal of Educational Computing Research [SAGE]
标识
DOI:10.1177/07356331241277937
摘要

The use of generative artificial intelligence (Gen-AI) to assist college students in their studies has become a trend. However, there is no academic consensus on whether Gen-AI can enhance the academic achievement of college students. Using a meta-analytic approach, this study aims to investigate the effectiveness of Gen-AI in improving the academic achievement of college students and to explore the effects of different moderating variables. A total of 28 articles (65 independent studies, 1909 participants) met the inclusion criteria for this study. The results showed that Gen-AI significantly improved college students’ academic achievement with a medium effect size (Hedges’s g = 0.533, 95% CI [0.408,0.659], p < .05). There were within-group differences in the three moderator variables, activity categories, sample size, and generated content, when the generated content was text ( g = 0.554, p < .05), and sample size of 21–40 ( g = 0.776, p < .05), the use of independent learning styles ( g = 0.600, p < .05) had the most significant improvement in college student’s academic achievement. The intervention duration, the discipline types, and the assessment tools also had a moderate positive impact on college students’ academic achievement, but there were no significant within-group differences in any of the moderating variables. This study provides a theoretical basis and empirical evidence for the scientific application of Gen-AI and the development of educational technology policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的宛白应助ntrip采纳,获得10
1秒前
Cy发布了新的文献求助10
1秒前
刻苦幻梅发布了新的文献求助10
1秒前
大虫子发布了新的文献求助10
1秒前
2秒前
个别完成签到,获得积分10
2秒前
小点点发布了新的文献求助10
3秒前
4秒前
淡然夜白完成签到,获得积分10
4秒前
怡然铃铛发布了新的文献求助10
5秒前
5秒前
Ava应助lgd2021采纳,获得10
6秒前
6秒前
务实的数据线应助破晓采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
春夏秋冬发布了新的文献求助10
9秒前
chenSH完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
12秒前
veraonly完成签到,获得积分20
12秒前
sjk发布了新的文献求助10
12秒前
13秒前
Chenyan775199发布了新的文献求助10
14秒前
14秒前
超级的代柔完成签到,获得积分20
14秒前
lxs发布了新的文献求助10
14秒前
超文献发布了新的文献求助10
15秒前
15秒前
吴天楚完成签到,获得积分10
16秒前
小点点完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135885
求助须知:如何正确求助?哪些是违规求助? 2786652
关于积分的说明 7778992
捐赠科研通 2442900
什么是DOI,文献DOI怎么找? 1298731
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870