Does Generative Artificial Intelligence Improve the Academic Achievement of College Students? A Meta-Analysis

适度 学业成绩 心理学 数学教育 学习风格 荟萃分析 样本量测定 社会心理学 统计 数学 医学 内科学
作者
Lihui Sun,Liang Zhou
出处
期刊:Journal of Educational Computing Research [SAGE]
卷期号:62 (7): 1676-1713 被引量:44
标识
DOI:10.1177/07356331241277937
摘要

The use of generative artificial intelligence (Gen-AI) to assist college students in their studies has become a trend. However, there is no academic consensus on whether Gen-AI can enhance the academic achievement of college students. Using a meta-analytic approach, this study aims to investigate the effectiveness of Gen-AI in improving the academic achievement of college students and to explore the effects of different moderating variables. A total of 28 articles (65 independent studies, 1909 participants) met the inclusion criteria for this study. The results showed that Gen-AI significantly improved college students’ academic achievement with a medium effect size (Hedges’s g = 0.533, 95% CI [0.408,0.659], p < .05). There were within-group differences in the three moderator variables, activity categories, sample size, and generated content, when the generated content was text ( g = 0.554, p < .05), and sample size of 21–40 ( g = 0.776, p < .05), the use of independent learning styles ( g = 0.600, p < .05) had the most significant improvement in college student’s academic achievement. The intervention duration, the discipline types, and the assessment tools also had a moderate positive impact on college students’ academic achievement, but there were no significant within-group differences in any of the moderating variables. This study provides a theoretical basis and empirical evidence for the scientific application of Gen-AI and the development of educational technology policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助AA18236931952采纳,获得10
刚刚
鹌鹑131完成签到,获得积分10
2秒前
Owen应助方董采纳,获得10
3秒前
3秒前
4秒前
852应助梁子恒采纳,获得10
4秒前
zj发布了新的文献求助10
5秒前
aminai完成签到,获得积分20
5秒前
6秒前
刘一手完成签到,获得积分10
8秒前
8秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
9秒前
程琛发布了新的文献求助20
10秒前
杳霭流玉发布了新的文献求助10
10秒前
10秒前
刘一手发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
12秒前
13秒前
舒心明杰完成签到,获得积分10
13秒前
13秒前
科研通AI6应助阙女士采纳,获得10
15秒前
醉熏的伊完成签到,获得积分10
15秒前
AA18236931952发布了新的文献求助10
16秒前
上官若男应助郑板桥采纳,获得10
16秒前
AJY完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
方董发布了新的文献求助10
20秒前
lengchitu发布了新的文献求助10
22秒前
无花果应助哟嚛采纳,获得10
22秒前
斯沃特应助研友_Zb1rln采纳,获得10
23秒前
23秒前
无情的rr发布了新的文献求助10
24秒前
zgx关注了科研通微信公众号
25秒前
Phoo完成签到 ,获得积分10
25秒前
谢朝邦发布了新的文献求助30
27秒前
伟少发布了新的文献求助100
27秒前
GPTea举报耶咦求助涉嫌违规
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123