Amlexanox reduces new-onset atrial fibrillation risk in sepsis by downregulating S100A12: a Mendelian randomization study

败血症 小桶 基因 计算生物学 孟德尔随机化 心房颤动 基因调控网络 全基因组关联研究 生物信息学 背景(考古学) 医学 生物 基因表达 转录组 免疫学 遗传学 内科学 单核苷酸多态性 遗传变异 基因型 古生物学
作者
Hang Yang,Feng Lin,Zhenjie Jiang,Xiaodan Wu,Kai Zeng
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fcvm.2024.1401314
摘要

Background Sepsis is characterized by high morbidity and mortality rates, alongside limited therapeutic efficacy. Atrial fibrillation (AF), the most common arrhythmia, has been closely linked to sepsis in prior research. However, the specific mechanisms through which sepsis leads to new-onset AF remain poorly understood. This study focuses on identifying critical genes that are dysregulated in the development of new-onset AF within the context of sepsis, with the goal of uncovering new potential targets for its diagnosis and prevention. Material and methods Our study began by applying Mendelian Randomization (MR) to assess the causal link between sepsis and AF. We then sourced sepsis and AF datasets from the Gene expression Omnibus (GEO) database. Using Weighted Gene Co-expression Network Analysis (WGCNA), we pinpointed key modules and genes associated with both sepsis and AF conditions. Protein-protein interaction (PPI) network was constructed. The Transcriptional Regulatory Relationships Unravelled by Sentence-based Text-mining (TRRUST) database helped build the transcription factor (TF) interaction network. Key genes were scrutinized through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) to delve into their roles in new-onset AF's pathophysiology during sepsis. We employed the CIBERSORT algorithm to evaluate immune infiltration and the association between key genes and immune cells. The Connectivity Map (CMap) database facilitated the prediction of potential small molecule compounds targeting key genes. To culminate, an acute sepsis mouse model was developed to validate the implicated mechanisms of key genes involved in new-onset AF during sepsis, and to assess the prophylactic effectiveness of identified drug candidates. Results MR revealed potential independent risk factors for new-onset AF in sepsis. S100A12 was identified as a core interaction gene with elevated levels in sepsis and AF, underscoring its diagnostic and predictive significance. S100A12, along with associated genes, was mainly linked to immune and inflammatory response signaling pathways, correlating with immune cell levels. Targeting S100A12 identifies five potential small molecule therapeutics: amlexanox, balsalazide, methandriol, olopatadine, and tiboloe. In animal studies, acute sepsis increased S100A12 expression in serum and atrial tissues, correlating positively with inflammatory markers (IL-1β, IL-6, TNF-α) and negatively with heart rate, indicating a predisposition to AF. Early amlexanox administration can reduced S100A12 expression, dampened inflammation, and lessened new-onset AF risk in sepsis. Conclusion This study demonstrates that sepsis may independently increase the risk of new-onset AF. We identified S100A12 as a key gene influencing the new-onset AF in sepsis through immune regulation, presenting considerable diagnostic and predictive value. Notably, amlexanox, by targeting S100A12 emerges as the most clinical relevant intervention for managing new-onset AF in sepsis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
上官若男应助嘟嘟采纳,获得10
刚刚
晨雨完成签到,获得积分10
1秒前
张志顺完成签到,获得积分10
1秒前
tyhg完成签到,获得积分10
1秒前
无辜洋葱发布了新的文献求助10
1秒前
ape完成签到,获得积分20
1秒前
马保国123发布了新的文献求助10
2秒前
归海紫翠完成签到,获得积分10
2秒前
2秒前
岑夜南完成签到,获得积分10
2秒前
uniphoton完成签到,获得积分10
2秒前
FashionBoy应助zzznznnn采纳,获得10
2秒前
2秒前
哈哈发布了新的文献求助10
2秒前
成就的山水完成签到,获得积分10
3秒前
3秒前
3秒前
尚可完成签到 ,获得积分10
3秒前
赖道之发布了新的文献求助10
4秒前
完美世界应助yuan采纳,获得10
4秒前
丘比特应助bluer采纳,获得10
4秒前
好运来发布了新的文献求助10
4秒前
榕俊完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
卡卡发布了新的文献求助10
5秒前
zouzou完成签到,获得积分10
6秒前
6秒前
CodeCraft应助FFF采纳,获得10
7秒前
冰河完成签到,获得积分10
7秒前
7秒前
领导范儿应助鱼雷采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762