Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge

偏转(物理) 结构工程 桁架 桁架桥 塔楼 垂直偏转 桥(图论) 比例模型 工程类 材料科学 计算机科学 电气工程 医学 物理 航空航天工程 内科学 光学 电磁线圈
作者
Lingxin Meng,Bo Sun,Yingjie Dang,Lizhong Shen,Yizhou Zhuang
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241281858
摘要

Bridge deflection serves as a vital and intuitive index for the evaluation of bridge safety. Temperature load has the greatest influence on the bridge deformation and studies on the temperature-induced deformation prediction of long-span bridge are in limited numbers. A digital prediction model based on deep learning in minute scale is established to study the bridge deflection caused by temperature. The wavelet transform (WT) is adopted to filter the high-frequency signals of the original deflection caused by the related load factors. Three different networks, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and Transformer variant, are studied and compared in the prediction process. Two different learning strategies considering different input data are also considered to optimize the prediction performance. The proposed prediction model is applied to the temperature induced deflection prediction of a multi-tower double-layer steel truss bridge. The results show that strategy A, which employs temperature time series data as input, is less effective than strategy B. Incorporating both temperature and deflection data as inputs is essential for predicting temperature-induced deflections. Moreover, the Transformer-variant network generally exhibits superior prediction performance compared to the LSTM and Bi-LSTM. The self-attention mechanism of the Transformer allows it to focus on key historical temperature points, thereby enhancing prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澈哩发布了新的文献求助10
刚刚
独特成威完成签到 ,获得积分10
刚刚
归尘发布了新的文献求助10
1秒前
1秒前
1秒前
PJ发布了新的文献求助30
1秒前
直率若菱发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
研友_VZG7GZ应助ATYS采纳,获得10
3秒前
风中的凝安完成签到,获得积分10
3秒前
稳重的若雁完成签到,获得积分10
3秒前
雨月残心完成签到,获得积分10
4秒前
4秒前
元气蛋完成签到,获得积分10
4秒前
4秒前
乐乐应助Tu采纳,获得10
5秒前
日常卖命完成签到,获得积分10
5秒前
学啥不好非要学生物完成签到,获得积分10
5秒前
seven发布了新的文献求助10
6秒前
简单迎夏发布了新的文献求助10
6秒前
Akim应助机灵的电脑采纳,获得10
6秒前
小张不吃香菜完成签到,获得积分10
7秒前
7秒前
8秒前
稳重向南发布了新的文献求助10
8秒前
沉夏谷发布了新的文献求助10
9秒前
赘婿应助皮卡采纳,获得10
9秒前
桐桐应助猕猴桃采纳,获得10
9秒前
科研通AI2S应助雪白的千雁采纳,获得10
9秒前
Jasper应助雪白的千雁采纳,获得10
9秒前
ljx发布了新的文献求助10
9秒前
Linda应助大胆的小白菜采纳,获得10
10秒前
XXX完成签到,获得积分10
10秒前
ybk完成签到,获得积分10
10秒前
10秒前
11秒前
务实蓝天完成签到,获得积分10
11秒前
wanci应助向北大望采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447914
求助须知:如何正确求助?哪些是违规求助? 3043709
关于积分的说明 8995581
捐赠科研通 2732147
什么是DOI,文献DOI怎么找? 1498659
科研通“疑难数据库(出版商)”最低求助积分说明 692846
邀请新用户注册赠送积分活动 690661