Sparse Fuzzy C-Means Clustering with Lasso Penalty

Lasso(编程语言) 模糊逻辑 聚类分析 高维数据聚类 计算机科学 特征(语言学) 数据挖掘 模糊聚类 数学 人工智能 算法 模式识别(心理学) 语言学 万维网 哲学
作者
Shazia Parveen,Miin‐Shen Yang
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:16 (9): 1208-1208 被引量:1
标识
DOI:10.3390/sym16091208
摘要

Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZiyinChen发布了新的文献求助10
刚刚
刚刚
1秒前
机灵的海莲完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
李特冷发布了新的文献求助10
4秒前
zlenetr发布了新的文献求助10
5秒前
激情的晓博完成签到,获得积分10
5秒前
CodeCraft应助catbird采纳,获得10
5秒前
chen发布了新的文献求助10
5秒前
斑鸠发布了新的文献求助20
6秒前
dudu发布了新的文献求助30
6秒前
6秒前
gu发布了新的文献求助10
7秒前
希希发布了新的文献求助10
7秒前
小石头完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助150
8秒前
ani发布了新的文献求助10
10秒前
英姑应助Sam十九采纳,获得10
11秒前
11秒前
小马甲应助莫愁采纳,获得10
12秒前
小夏发布了新的文献求助10
12秒前
眯眯眼的忆山完成签到,获得积分10
14秒前
daliu完成签到,获得积分0
15秒前
15秒前
LIJIngcan发布了新的文献求助10
16秒前
小虫虫完成签到,获得积分10
16秒前
16秒前
丘比特应助ZiyinChen采纳,获得10
16秒前
机灵的海莲关注了科研通微信公众号
17秒前
18秒前
大个应助dudu采纳,获得30
18秒前
量子星尘发布了新的文献求助150
19秒前
19秒前
WoeL.Aug.11完成签到 ,获得积分10
21秒前
源缘发布了新的文献求助10
21秒前
21秒前
Hmzek发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447