Sparse Fuzzy C-Means Clustering with Lasso Penalty

Lasso(编程语言) 模糊逻辑 聚类分析 高维数据聚类 计算机科学 特征(语言学) 数据挖掘 模糊聚类 数学 人工智能 算法 模式识别(心理学) 语言学 万维网 哲学
作者
Shazia Parveen,Miin‐Shen Yang
出处
期刊:Symmetry [MDPI AG]
卷期号:16 (9): 1208-1208 被引量:1
标识
DOI:10.3390/sym16091208
摘要

Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zzx采纳,获得10
刚刚
求助文献完成签到,获得积分20
1秒前
mark完成签到,获得积分10
1秒前
酷波er应助甜甜醉波采纳,获得10
2秒前
烟花应助陈志强采纳,获得10
2秒前
2秒前
洪晖阳完成签到,获得积分10
3秒前
莫筱铭发布了新的文献求助10
3秒前
momeak发布了新的文献求助10
4秒前
Akim应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
123应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
汤飞飞完成签到,获得积分10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
asdfzxcv应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
123应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
欢呼乘风应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
123应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
6秒前
wocao完成签到 ,获得积分10
6秒前
希望天下0贩的0应助guozi采纳,获得10
6秒前
7秒前
zhonglv7应助xuan采纳,获得10
8秒前
9秒前
rauldai完成签到,获得积分10
10秒前
汤飞飞发布了新的文献求助30
11秒前
12秒前
帅气鹭洋发布了新的文献求助10
12秒前
12秒前
清明居士发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858