亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse Fuzzy C-Means Clustering with Lasso Penalty

Lasso(编程语言) 模糊逻辑 聚类分析 计算机科学 惩罚法 模糊聚类 数学 人工智能 模式识别(心理学) 数学优化 万维网
作者
Shazia Parveen,Miin‐Shen Yang
出处
期刊:Symmetry [MDPI AG]
卷期号:16 (9): 1208-1208
标识
DOI:10.3390/sym16091208
摘要

Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾曾完成签到,获得积分20
10秒前
caca完成签到,获得积分10
26秒前
CodeCraft应助陪你长大采纳,获得10
32秒前
37秒前
虚幻沛菡完成签到 ,获得积分10
42秒前
48秒前
51秒前
陪你长大发布了新的文献求助10
52秒前
56秒前
春天的粥完成签到 ,获得积分10
1分钟前
niuhuhu发布了新的文献求助10
1分钟前
善学以致用应助niuhuhu采纳,获得10
1分钟前
1分钟前
1分钟前
纳米完成签到,获得积分10
1分钟前
望月发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Umair发布了新的文献求助10
1分钟前
1分钟前
艾七七发布了新的文献求助10
1分钟前
充电宝应助艾七七采纳,获得10
1分钟前
2分钟前
2分钟前
张贵超发布了新的文献求助10
2分钟前
艾七七完成签到,获得积分10
2分钟前
一个达不溜完成签到,获得积分20
2分钟前
2分钟前
bkagyin应助CHAIZH采纳,获得10
2分钟前
陌路完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
CHAIZH发布了新的文献求助10
2分钟前
LawShu完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高贵魂幽发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417547
求助须知:如何正确求助?哪些是违规求助? 3019200
关于积分的说明 8886779
捐赠科研通 2706683
什么是DOI,文献DOI怎么找? 1484433
科研通“疑难数据库(出版商)”最低求助积分说明 685989
邀请新用户注册赠送积分活动 681147