Sparse Fuzzy C-Means Clustering with Lasso Penalty

Lasso(编程语言) 模糊逻辑 聚类分析 计算机科学 惩罚法 模糊聚类 数学 人工智能 模式识别(心理学) 数学优化 万维网
作者
Shazia Parveen,Miin‐Shen Yang
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:16 (9): 1208-1208
标识
DOI:10.3390/sym16091208
摘要

Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成就的白羊完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
独角兽发布了新的文献求助10
2秒前
2秒前
风中的太阳完成签到,获得积分10
2秒前
hz_sz完成签到,获得积分10
3秒前
3秒前
Eric完成签到,获得积分10
3秒前
赘婿应助Amorfati采纳,获得10
3秒前
3秒前
连南烟发布了新的文献求助10
4秒前
4秒前
CM发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
施天问发布了新的文献求助10
5秒前
YANDD发布了新的文献求助10
5秒前
SciGPT应助11采纳,获得10
5秒前
涂钰完成签到,获得积分20
6秒前
6秒前
shang发布了新的文献求助10
6秒前
enchanted完成签到,获得积分10
6秒前
杀鸡不用刀完成签到 ,获得积分10
6秒前
Lucas应助lllm采纳,获得10
7秒前
英俊001完成签到 ,获得积分10
7秒前
7秒前
Liang完成签到,获得积分10
7秒前
7秒前
8秒前
大个应助猪猪hero采纳,获得10
8秒前
8秒前
感动水杯发布了新的文献求助10
9秒前
9秒前
louis136116发布了新的文献求助10
9秒前
lv发布了新的文献求助10
9秒前
结实的栾完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345