Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小辞芙芙发布了新的文献求助10
1秒前
1秒前
1秒前
小琪猪完成签到,获得积分10
2秒前
小宅女完成签到 ,获得积分10
2秒前
漉浔完成签到 ,获得积分10
2秒前
wangyiren发布了新的文献求助10
2秒前
闲闲完成签到,获得积分10
2秒前
巧克力曲奇完成签到,获得积分20
2秒前
yolo完成签到,获得积分10
2秒前
3秒前
棉花糖发布了新的文献求助10
3秒前
4秒前
Hello应助谦让靖儿采纳,获得10
5秒前
JOhn发布了新的文献求助10
5秒前
5秒前
姜惠完成签到,获得积分10
6秒前
九方嘉许完成签到,获得积分10
6秒前
Felixsun发布了新的文献求助10
6秒前
科研三轮车完成签到,获得积分10
6秒前
子清1987完成签到,获得积分10
7秒前
洪豆豆完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
少川完成签到 ,获得积分10
9秒前
含糊的玲发布了新的文献求助10
10秒前
二十二完成签到,获得积分10
10秒前
dnxn发布了新的文献求助30
11秒前
边伯贤完成签到 ,获得积分10
11秒前
又又s_1完成签到 ,获得积分20
12秒前
汪汪完成签到,获得积分10
12秒前
Chance完成签到,获得积分10
13秒前
Owen应助Felixsun采纳,获得10
13秒前
加油干完成签到,获得积分10
13秒前
13秒前
小小鱼完成签到,获得积分10
14秒前
14秒前
昏睡的慕青完成签到,获得积分10
14秒前
淡然的天佑完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285