Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
q1nzang完成签到 ,获得积分10
2秒前
岩鹰完成签到,获得积分10
2秒前
脑洞疼应助baixue采纳,获得10
9秒前
1211372857完成签到 ,获得积分10
10秒前
开心榴莲大王完成签到 ,获得积分10
10秒前
10秒前
黄油可颂完成签到 ,获得积分10
11秒前
xue完成签到 ,获得积分10
12秒前
诚心的访蕊完成签到 ,获得积分10
12秒前
Johan完成签到 ,获得积分10
13秒前
呼延坤完成签到 ,获得积分10
14秒前
滴滴完成签到 ,获得积分20
18秒前
123完成签到 ,获得积分10
19秒前
易槐完成签到 ,获得积分10
20秒前
Chloe完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
王十二完成签到 ,获得积分10
29秒前
斯文败类应助科研通管家采纳,获得10
30秒前
xzy998应助科研通管家采纳,获得10
30秒前
xzy998应助科研通管家采纳,获得10
30秒前
天天开心完成签到 ,获得积分10
30秒前
yu完成签到,获得积分10
31秒前
Owen应助Snoopy采纳,获得10
31秒前
32秒前
甜蜜外套完成签到 ,获得积分10
33秒前
感性的俊驰完成签到 ,获得积分10
34秒前
清浅溪完成签到 ,获得积分10
34秒前
35秒前
38秒前
和谐的冬莲完成签到 ,获得积分10
39秒前
NIHAO完成签到 ,获得积分10
40秒前
rgjipeng完成签到,获得积分0
41秒前
white完成签到,获得积分10
42秒前
Snoopy发布了新的文献求助10
43秒前
安静严青完成签到 ,获得积分10
45秒前
冷酷石头发布了新的文献求助10
45秒前
夏虫完成签到,获得积分10
47秒前
guo完成签到,获得积分10
48秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880