Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha6789y完成签到,获得积分10
刚刚
愤怒的水绿完成签到,获得积分10
1秒前
卡卡西完成签到,获得积分10
1秒前
wuxinrong完成签到 ,获得积分10
1秒前
需要交流的铅笔完成签到 ,获得积分10
4秒前
喵了个咪完成签到 ,获得积分10
4秒前
hahaha2完成签到,获得积分10
4秒前
XU博士完成签到,获得积分10
4秒前
dmr完成签到,获得积分10
4秒前
Mo完成签到,获得积分10
4秒前
BlueKitty完成签到,获得积分10
4秒前
sheep完成签到,获得积分10
4秒前
cl完成签到,获得积分10
5秒前
maybe完成签到,获得积分10
5秒前
徐彬荣完成签到,获得积分10
5秒前
simon666完成签到,获得积分10
5秒前
Walton完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
蛰曜完成签到,获得积分10
5秒前
hupx完成签到 ,获得积分10
5秒前
spider534完成签到,获得积分10
6秒前
MaxwellZH完成签到,获得积分10
6秒前
Tom2077完成签到,获得积分10
6秒前
青黛完成签到 ,获得积分10
7秒前
往昔不过微澜完成签到,获得积分10
7秒前
hahaha1完成签到,获得积分10
7秒前
fate完成签到,获得积分10
8秒前
量子咸鱼K完成签到,获得积分10
8秒前
surlamper完成签到,获得积分10
8秒前
霡霂完成签到,获得积分10
8秒前
冰冻芋头完成签到,获得积分10
8秒前
骄傲慕尼黑完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
悦耳冬萱完成签到 ,获得积分10
19秒前
maprang完成签到,获得积分10
19秒前
19秒前
幸福妙柏完成签到 ,获得积分10
21秒前
hupengxin完成签到 ,获得积分10
21秒前
结实的冬寒完成签到 ,获得积分10
21秒前
温柔梦松完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658456
求助须知:如何正确求助?哪些是违规求助? 4821768
关于积分的说明 15081508
捐赠科研通 4816942
什么是DOI,文献DOI怎么找? 2577824
邀请新用户注册赠送积分活动 1532666
关于科研通互助平台的介绍 1491364