已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
岚岚完成签到,获得积分10
3秒前
了了完成签到 ,获得积分10
4秒前
4秒前
权翼发布了新的文献求助10
9秒前
HYQ完成签到 ,获得积分10
9秒前
福斯卡完成签到 ,获得积分10
9秒前
青柠完成签到 ,获得积分10
10秒前
12秒前
思源应助linsen采纳,获得10
13秒前
14秒前
李健的小迷弟应助xxwyj采纳,获得10
15秒前
tzl完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
dongyi发布了新的文献求助200
21秒前
深情安青应助知弈否采纳,获得10
24秒前
JD完成签到 ,获得积分10
24秒前
浮游应助LJY采纳,获得10
26秒前
tanrui发布了新的文献求助20
27秒前
27秒前
三岁完成签到 ,获得积分10
28秒前
汉堡包应助dongyi采纳,获得10
31秒前
怕黑山柏发布了新的文献求助10
32秒前
兜兜发布了新的文献求助30
32秒前
Hello应助tanrui采纳,获得10
36秒前
liuling完成签到,获得积分10
38秒前
rongrongrong完成签到,获得积分10
39秒前
小白果果完成签到,获得积分10
40秒前
41秒前
心灵美鑫完成签到 ,获得积分10
42秒前
43秒前
45秒前
46秒前
Linos应助伯克利芙蓉王采纳,获得10
47秒前
47秒前
lige完成签到 ,获得积分10
49秒前
49秒前
田田发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361