亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助端庄千青采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
拿铁小笼包完成签到,获得积分10
4秒前
8秒前
细心的雨竹完成签到,获得积分10
9秒前
9秒前
嘻嘻完成签到,获得积分10
10秒前
青柠发布了新的文献求助10
14秒前
充电宝应助fzy采纳,获得10
15秒前
17秒前
吱吱吱吱发布了新的文献求助10
21秒前
清秀芝麻完成签到 ,获得积分10
25秒前
小四发布了新的文献求助20
25秒前
kangkang完成签到,获得积分10
25秒前
Jasper应助糖拌西红柿采纳,获得10
28秒前
mmyhn完成签到,获得积分10
31秒前
33秒前
苗条书桃完成签到,获得积分10
33秒前
科研通AI6应助殷楷霖采纳,获得10
34秒前
1717发布了新的文献求助10
36秒前
kmy完成签到 ,获得积分10
36秒前
Y26完成签到,获得积分10
39秒前
41秒前
41秒前
洁净的千凡完成签到 ,获得积分20
42秒前
小圭发布了新的文献求助10
45秒前
Ava应助科研通管家采纳,获得10
47秒前
Kiki发布了新的文献求助10
48秒前
科研通AI6应助幸运幸福采纳,获得10
49秒前
52秒前
小四完成签到,获得积分20
53秒前
57秒前
57秒前
57秒前
小二郎应助优秀星星采纳,获得10
1分钟前
今后应助可靠的寒风采纳,获得10
1分钟前
1分钟前
Kiki完成签到,获得积分10
1分钟前
fzy发布了新的文献求助10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790