Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流露完成签到,获得积分10
刚刚
奶昔发布了新的文献求助10
刚刚
王泽坤发布了新的文献求助10
刚刚
大个应助123456采纳,获得20
1秒前
小蘑菇应助紧张的世德采纳,获得10
1秒前
1秒前
Silhouette发布了新的文献求助10
2秒前
Qin发布了新的文献求助10
2秒前
2秒前
王KKK发布了新的文献求助10
3秒前
YY完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
科研小子完成签到,获得积分10
5秒前
发顶刊发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
xueshu发布了新的文献求助10
6秒前
thesky完成签到,获得积分10
7秒前
dx完成签到,获得积分10
7秒前
7秒前
Clover04发布了新的文献求助10
8秒前
8秒前
琦琦完成签到,获得积分10
8秒前
8秒前
la完成签到,获得积分10
8秒前
平常翩跹完成签到 ,获得积分20
8秒前
9秒前
科研通AI6应助冷冷子采纳,获得10
9秒前
logen发布了新的文献求助10
9秒前
妩媚的海应助fff采纳,获得50
9秒前
大炮弹发布了新的文献求助10
9秒前
9秒前
自行车v完成签到,获得积分10
9秒前
9秒前
9秒前
积土成山完成签到,获得积分10
11秒前
linhappy完成签到 ,获得积分10
11秒前
11秒前
LYL完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401