已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感性的靖仇完成签到,获得积分20
刚刚
Jessica完成签到,获得积分10
1秒前
ffjx发布了新的文献求助10
3秒前
SciGPT应助俊逸的谷梦采纳,获得10
5秒前
7秒前
kbcbwb2002完成签到,获得积分0
7秒前
yunsww完成签到,获得积分10
8秒前
8秒前
啊怙纲完成签到 ,获得积分10
8秒前
pass完成签到 ,获得积分10
8秒前
黑大侠完成签到 ,获得积分0
9秒前
起风了发布了新的文献求助10
10秒前
丘比特应助土墙采纳,获得10
11秒前
畅快凝安发布了新的文献求助10
12秒前
youlinn发布了新的文献求助10
13秒前
王定帮完成签到,获得积分10
13秒前
爱壹帆完成签到,获得积分10
15秒前
wjp关闭了wjp文献求助
16秒前
minnanfan完成签到 ,获得积分20
16秒前
16秒前
赘婿应助louming采纳,获得10
16秒前
19秒前
21秒前
momo完成签到,获得积分10
21秒前
kk完成签到 ,获得积分10
21秒前
54xy完成签到,获得积分10
23秒前
24秒前
Sushi完成签到,获得积分10
24秒前
24秒前
激情的健柏完成签到 ,获得积分10
25秒前
彭于晏应助起风了采纳,获得10
26秒前
lxz发布了新的文献求助10
27秒前
Luckydan应助jun采纳,获得10
27秒前
周钰波完成签到,获得积分10
27秒前
28秒前
谢绍博发布了新的文献求助10
29秒前
牢囧完成签到 ,获得积分10
32秒前
32秒前
隐形曼青应助Drwenlu采纳,获得10
32秒前
顾矜应助Drwenlu采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309