亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
drirshad发布了新的文献求助10
7秒前
yannn1126完成签到,获得积分10
25秒前
43秒前
天天天晴完成签到 ,获得积分10
43秒前
halo完成签到,获得积分10
44秒前
1分钟前
halo发布了新的文献求助10
1分钟前
无花果应助从容幼南采纳,获得10
1分钟前
务实的访卉完成签到 ,获得积分10
1分钟前
典雅的皓轩完成签到 ,获得积分10
1分钟前
1分钟前
李爱国应助777采纳,获得10
1分钟前
1分钟前
drirshad完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助满意的世界采纳,获得10
1分钟前
Mipe发布了新的文献求助10
1分钟前
777发布了新的文献求助10
1分钟前
2分钟前
Mipe完成签到,获得积分10
2分钟前
从容幼南发布了新的文献求助10
2分钟前
2分钟前
从容幼南完成签到,获得积分10
2分钟前
yannn1126发布了新的文献求助10
2分钟前
Wang完成签到,获得积分10
2分钟前
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
Wang发布了新的文献求助10
2分钟前
宋宋不迷糊完成签到 ,获得积分10
2分钟前
2分钟前
ljz完成签到,获得积分10
2分钟前
爆米花应助NEKO采纳,获得10
3分钟前
科研填坑人完成签到,获得积分10
3分钟前
3分钟前
思源应助Papayaaa采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853366
捐赠科研通 4689194
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608