Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Akim应助刘忙采纳,获得10
1秒前
所所应助追寻翩跹采纳,获得10
2秒前
慕何完成签到 ,获得积分10
2秒前
3秒前
66发布了新的文献求助10
3秒前
脑洞疼应助可乐土豆饼采纳,获得10
3秒前
3秒前
3秒前
晚星发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
Orange应助winner2030采纳,获得30
5秒前
yan发布了新的文献求助10
6秒前
6秒前
wwyyl完成签到,获得积分10
6秒前
feiling应助zj采纳,获得10
6秒前
7秒前
北枳发布了新的文献求助10
7秒前
宇飞思妖发布了新的文献求助10
7秒前
liiuliu发布了新的文献求助10
8秒前
川藏客完成签到,获得积分10
8秒前
Camelia发布了新的文献求助10
8秒前
8秒前
9秒前
一眼云烟完成签到,获得积分10
10秒前
asipilin发布了新的文献求助10
10秒前
10秒前
Hhhhh发布了新的文献求助10
10秒前
10秒前
大胆的含卉完成签到,获得积分10
11秒前
12秒前
dud发布了新的文献求助10
12秒前
12秒前
传统的青完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507383
求助须知:如何正确求助?哪些是违规求助? 4603007
关于积分的说明 14483238
捐赠科研通 4536810
什么是DOI,文献DOI怎么找? 2486410
邀请新用户注册赠送积分活动 1469007
关于科研通互助平台的介绍 1441377