Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡觉公主完成签到,获得积分10
刚刚
归诚完成签到,获得积分10
刚刚
paulz完成签到,获得积分10
1秒前
1秒前
1秒前
欣慰乐松发布了新的文献求助10
2秒前
HughWang完成签到,获得积分10
2秒前
神揽星辰入梦完成签到,获得积分10
2秒前
4秒前
孔令琦完成签到,获得积分10
5秒前
5秒前
睡觉公主发布了新的文献求助10
5秒前
yxy999完成签到,获得积分10
6秒前
Liangyu发布了新的文献求助10
6秒前
Andrea0899完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
谁在深海的大菠萝里完成签到,获得积分20
8秒前
ygg应助胡罗卜采纳,获得10
8秒前
tsuki完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Mavis发布了新的文献求助30
9秒前
SciGPT应助研友_ngqgY8采纳,获得10
9秒前
Dreamhappy发布了新的文献求助10
10秒前
Jie发布了新的文献求助10
10秒前
10秒前
英俊的铭应助WenyHe采纳,获得10
10秒前
manerest完成签到 ,获得积分10
10秒前
plain完成签到,获得积分10
11秒前
小羊子发布了新的文献求助10
11秒前
NexusExplorer应助珂颜堂AI采纳,获得10
11秒前
甜甜的凝安完成签到 ,获得积分10
11秒前
12秒前
李雨发布了新的文献求助10
12秒前
青青完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645458
求助须知:如何正确求助?哪些是违规求助? 4768941
关于积分的说明 15029289
捐赠科研通 4804094
什么是DOI,文献DOI怎么找? 2568703
邀请新用户注册赠送积分活动 1525977
关于科研通互助平台的介绍 1485604