Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caiia发布了新的文献求助10
1秒前
无花果应助小慧儿采纳,获得10
1秒前
CipherSage应助海绵宝宝采纳,获得10
2秒前
研友_VZG7GZ应助秀丽的盈采纳,获得10
2秒前
3秒前
天天快乐应助wsj采纳,获得10
3秒前
科目三应助专一的金鱼采纳,获得10
4秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
皮皮琪完成签到,获得积分10
8秒前
kakaa发布了新的文献求助10
8秒前
翻转小花园完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
静静在学呢完成签到,获得积分10
11秒前
12秒前
afterglow完成签到 ,获得积分10
12秒前
小慧儿发布了新的文献求助10
12秒前
SciGPT应助pearlwh1227采纳,获得10
13秒前
热爱学术的蓝色大尾巴鱼完成签到,获得积分10
13秒前
缥缈八宝粥完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
十三完成签到 ,获得积分10
15秒前
15秒前
给我点光环完成签到,获得积分10
16秒前
月yue发布了新的文献求助10
17秒前
Artorias发布了新的文献求助20
17秒前
17秒前
Wang完成签到,获得积分10
17秒前
18秒前
caiia完成签到,获得积分10
18秒前
迟歌完成签到,获得积分10
18秒前
Son4904发布了新的文献求助30
18秒前
Genius发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648780
求助须知:如何正确求助?哪些是违规求助? 4776351
关于积分的说明 15045465
捐赠科研通 4807646
什么是DOI,文献DOI怎么找? 2571009
邀请新用户注册赠送积分活动 1527687
关于科研通互助平台的介绍 1486590