Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

边距(机器学习) 计算机科学 一致性(知识库) 机器学习 人工智能 匹配(统计) 过程(计算) 可靠性(半导体) 图像分割 分割 统计 功率(物理) 物理 数学 量子力学 操作系统
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨洋完成签到,获得积分20
1秒前
ldkl完成签到,获得积分0
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
芝麻小丸子完成签到,获得积分10
1秒前
小马甲应助YaoHui采纳,获得10
1秒前
mouxq发布了新的文献求助10
1秒前
1秒前
天天快乐应助小张不嘻嘻采纳,获得10
2秒前
3秒前
cicicixixici发布了新的文献求助10
3秒前
4秒前
4秒前
zjh发布了新的文献求助10
4秒前
xxxxxx完成签到,获得积分20
4秒前
ding应助李苏爱采纳,获得10
5秒前
5秒前
斯文败类应助原梦采纳,获得10
7秒前
思哲范发布了新的文献求助10
7秒前
科研通AI6应助zhu采纳,获得10
7秒前
8秒前
8秒前
8秒前
阮绝悟发布了新的文献求助10
8秒前
热心幻天发布了新的文献求助10
9秒前
9秒前
10秒前
lcdamoy完成签到,获得积分10
10秒前
10秒前
LIU发布了新的文献求助10
11秒前
11秒前
柴六斤完成签到,获得积分10
12秒前
12秒前
️语完成签到 ,获得积分10
12秒前
zjh完成签到,获得积分10
12秒前
JamesPei应助开放的明杰采纳,获得10
13秒前
13秒前
郡邑完成签到,获得积分10
13秒前
yiyi完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959