摘要
No AccessEngineering NotesPredefined-Time Hybrid Tracking Control of Flexible Satellites with Conditional Anti-UnwindingGargi Das and Manoranjan SinhaGargi DasIndian Institute of Technology Kharagpur, West Bengal 721 302, India and Manoranjan SinhaIndian Institute of Technology Kharagpur, West Bengal 721 302, IndiaPublished Online:23 Aug 2024https://doi.org/10.2514/1.G008286SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookXLinked InRedditEmail About References [1] Bhat S. P. and Bernstein D. S., "A Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon," Systems & Control Letters, Vol. 39, No. 1, 2000, pp. 63–70. https://doi.org/10.1016/S0167-6911(99)00090-0 CrossrefGoogle Scholar[2] Schaub H. and Junkins J. L., "Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters," Journal of the Astronautical Sciences, Vol. 44, No. 1, 1996, pp. 1–19. Google Scholar[3] Das G. and Sinha M., "Unwinding-Free Fast Finite-Time Sliding-Mode Satellite Attitude Tracking Control," Journal of Guidance, Control, and Dynamics, Vol. 46, No. 2, 2023, pp. 325–342. https://doi.org/10.2514/1.G006949 LinkGoogle Scholar[4] Gui H. and Vukovich G., "Robust Switching of Modified Rodrigues Parameter Sets for Saturated Global Attitude Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 6, 2017, pp. 1529–1542. https://doi.org/10.2514/1.G002339 LinkGoogle Scholar[5] Hu Q., Li L. and Friswell M. I., "Spacecraft Anti-Unwinding Attitude Control with Actuator Nonlinearities and Velocity Limit," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 10, 2015, pp. 2042–2050. https://doi.org/10.2514/1.G000980 LinkGoogle Scholar[6] Dong R. Q., Wu A. G., Zhang Y., Duan G. R. and Li B., "Anti-Unwinding Terminal Sliding Mode Attitude Tracking Control for Rigid Spacecraft," Automatica, Vol. 145, Nov. 2022, Paper 110567. https://doi.org/10.1016/j.automatica.2022.110567 Google Scholar[7] Dong R. Q., Wu A. G., Zhang Y. and Duan G. R., "Anti-Unwinding Sliding Mode Attitude Control via Two Modified Rodrigues Parameter Sets for Spacecraft," Automatica, Vol. 129, July 2021, Paper 109642. https://doi.org/10.1016/j.automatica.2021.109642 Google Scholar[8] Hasan M. N., Haris M. and Qin S., "Flexible Spacecraft's Active Fault-Tolerant and Anti-Unwinding Attitude Control with Vibration Suppression," Aerospace Science and Technology, Vol. 122, March 2022, Paper 107397. https://doi.org/10.1016/j.ast.2022.107397 Google Scholar[9] Dong R. Q., Nagamune R. and Wu A. G., "Anti-Unwinding Nonsingular Terminal Sliding Mode Control with Attitude Maneuver Planning for Flexible Spacecraft," International Journal of Robust and Nonlinear Control, Vol. 33, No. 3, 2023, pp. 2090–2112. https://doi.org/10.1002/rnc.6529 CrossrefGoogle Scholar[10] Aldana-López R., Gómez-Gutiérrez D., Jiménez-Rodríguez E., Sánchez-Torres J. D. and Defoort M., "Enhancing the Settling Time Estimation of a Class of Fixed-Time Stable Systems," International Journal of Robust and Nonlinear Control, Vol. 29, No. 12, 2019, pp. 4135–4148. https://doi.org/10.1002/rnc.4600 CrossrefGoogle Scholar[11] Munoz-Vázquez A. J., Sánchez-Torres J. D., Jiménez-Rodríguez E. and Loukianov A. G., "Predefined-Time Robust Stabilization of Robotic Manipulators," IEEE/ASME Transactions on Mechatronics, Vol. 24, No. 3, 2019, pp. 1033–1040. https://doi.org/10.1109/TMECH.3516 Google Scholar[12] Xie S., Chen Q. and He X., "Predefined-Time Approximation-Free Attitude Constraint Control of Rigid Spacecraft," IEEE Transactions on Aerospace and Electronic Systems, Vol. 59, No. 1, 2022, pp. 347–358. https://doi.org/10.1109/TAES.2022.3183550 Google Scholar[13] Ye D., Zou A. M. and Sun. Z., "Predefined-Time Predefined-Bounded Attitude Tracking Control for Rigid Spacecraft," IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 1, 2021, pp. 464–472. https://doi.org/10.1109/TAES.2021.3103258 Google Scholar[14] Di Gennaro S., "Active Vibration Suppression in Flexible Spacecraft Attitude Tracking," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 3, 1998, pp. 400–408. https://doi.org/10.2514/2.4272 LinkGoogle Scholar[15] Hardy G. H., Littlewood J. E., Pólya G. and Pólya G., Inequalities, Cambridge Univ. Press, Cambridge, MA, 1952, pp. 10–30, Chap. 2. Google Scholar[16] Yu Z., Li Y., Lv M., Chang J. and Pei B., "Predefined-Time Anti-Saturation Fault-Tolerant Attitude Control for Tailless Aircraft with Guaranteed Output Constraints," Nonlinear Dynamics, Vol. 111, No. 2, 2023, pp. 1399–1416. https://doi.org/10.1007/s11071-022-07904-7 CrossrefGoogle Scholar[17] Golestani M., Esmaeilzadeh S. M. and Mobayen S., "Fixed-Time Control for High-Precision Attitude Stabilization of Flexible Spacecraft," European Journal of Control, Vol. 57, Jan. 2021, pp. 222–231. https://doi.org/10.1016/j.ejcon.2020.05.006 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance Metrics CrossmarkInformationCopyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAttitude ControlControl TheoryEnergyEnergy ConsumptionEnergy EconomicsGuidance, Navigation, and Control SystemsOrbital ManeuversSatellite GuidanceSatellitesSpace OrbitSpace Systems and VehiclesSpacecraft Guidance and ControlSpacecrafts KeywordsSatellite BusTerminal Sliding ModeAttitude Control SystemEnergy ConsumptionPassive Vibration ControlSatellite Attitude ControlLarge Angle ManeuverAnti-unwindingpredefined-time controlDigital Received20 February 2024Accepted5 July 2024Published online23 August 2024