Osteoinductive biomaterials: machine learning for prediction and interpretation

骨形成 机器学习 数据库 人工智能 数据挖掘 计算机科学 医学 内分泌学
作者
Sicong Lin,Yan Zhuang,Ke Chen,Jian Lü,Kefeng Wang,Han Lin,Mufei Li,Xiangfeng Li,Xiangdong Zhu,Mingli Yang,Guangfu Yin,Jiangli Lin,Xingdong Zhang
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:187: 422-433 被引量:1
标识
DOI:10.1016/j.actbio.2024.08.017
摘要

Biomaterials with osteoinductivity are widely used for bone defect repair due to their unique structures and functions. Machine learning (ML) is pivotal in analyzing osteoinductivity and accelerating new material design. However, challenges include creating a comprehensive database of osteoinductive materials and dealing with low-quality, disparate data. As a standard for evaluating the osteoinductivity of biomaterials, ectopic ossification has been used. This paper compiles research findings from the past thirty years, resulting in a robust database validated by experts. To tackle issues of limited data samples, missing data, and high-dimensional sparsity, a data enhancement strategy is developed. This approach achieved an area under the curve (AUC) of 0.921, a precision of 0.839, and a recall of 0.833. Model interpretation identified key factors such as porosity, bone morphogenetic protein-2 (BMP-2), and hydroxyapatite (HA) proportion as crucial determinants of outcomes. Optimizing pore structure and material composition through partial dependence plot (PDP) analysis led to a new bone area ratio of 14.7 ± 7 % in animal experiments, surpassing the database average of 10.97 %. This highlights the significant potential of ML in the development and design of osteoinductive materials. STATEMENT OF SIGNIFICANCE: This study leverages machine learning to analyze osteoinductive biomaterials, addressing challenges in database creation and data quality. Our data enhancement strategy significantly improved model performance. By optimizing pore structure and material composition, we increased new bone formation rates, showcasing the vast potential of machine learning in biomaterial design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助a_hu采纳,获得10
刚刚
科研通AI5应助正直的西牛采纳,获得10
1秒前
2秒前
3秒前
3秒前
mujin完成签到,获得积分10
3秒前
万能图书馆应助Wfmmm采纳,获得10
4秒前
司空豁发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助nihaoya172采纳,获得30
4秒前
4秒前
东东发布了新的文献求助10
5秒前
6秒前
晴天完成签到,获得积分10
6秒前
7秒前
猫咪老师应助linda采纳,获得30
7秒前
北雁发布了新的文献求助10
8秒前
8秒前
慕青应助mujin采纳,获得10
8秒前
9秒前
大仙儿完成签到 ,获得积分10
10秒前
木棉发布了新的文献求助10
10秒前
李爱国应助东东采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
佰斯特威应助科研通管家采纳,获得10
12秒前
sweetbearm应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
liian7应助科研通管家采纳,获得20
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
yang应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A Handbook of Process Tracing Methods : 2nd Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3699164
求助须知:如何正确求助?哪些是违规求助? 3249937
关于积分的说明 9866049
捐赠科研通 2961729
什么是DOI,文献DOI怎么找? 1624176
邀请新用户注册赠送积分活动 769211
科研通“疑难数据库(出版商)”最低求助积分说明 742097