A Deep Retinex-Based Low-Light Enhancement Network Fusing Rich Intrinsic Prior Information

计算机科学 颜色恒定性 人工智能 深度学习 计算机视觉 图像(数学)
作者
Yujie Li,Xuekai Wei,Xiaofeng Liao,You Zhao,Fan Jia,Xu Zhuang,Mingliang Zhou
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3689642
摘要

Images captured under low-light conditions are characterized by lower visual quality and perception levels than images obtained in better lighting scenarios. Studies focused on low-light enhancement techniques seek to address this dilemma. However, simple image brightening results in significant noise, blurring, and colour distortion. In this paper, we present a low-light enhancement (LLE) solution that effectively synergizes Retinex theory with deep learning. Specifically, we construct an efficient image gradient map estimation module based on convolutional networks that can efficiently generate noise-free image gradient maps to assist with denoising. Second, to improve upon the traditional optimization model, we design a matrix-preserving optimization method (MPOM) coupled with deep learning modules, and it exhibits high speed and low memory consumption. Third, we incorporate image structure, image texture, and implicit prior information to optimize the enhancement process for low-light conditions and overcome prevailing limitations, such as oversmoothing, significant noise, etc. . Through extensive experiments, we show that our approach has notable advantages over the existing methods and demonstrate superiority and effectiveness, surpassing the state-of-the-art methods by an average of 1.23 dB in PSNR for the LOL and VE-LOL datasets. The code for the proposed method is available in a public repository for open-source use: https://github.com/luxunL/DRNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助Nuyoah采纳,获得10
刚刚
xxq发布了新的文献求助10
1秒前
Akim应助绵马紫萁采纳,获得10
1秒前
ikun完成签到,获得积分10
2秒前
马克发布了新的文献求助10
2秒前
3秒前
3秒前
小杜完成签到 ,获得积分10
3秒前
3秒前
3秒前
chem001完成签到,获得积分10
3秒前
可靠雪雪完成签到,获得积分10
4秒前
科研通AI2S应助Yani采纳,获得10
5秒前
琳琳发布了新的文献求助10
5秒前
5秒前
5秒前
可耐的妙芙完成签到,获得积分20
5秒前
qdr完成签到,获得积分10
6秒前
zik应助怕黑忆文采纳,获得10
6秒前
swallow发布了新的文献求助10
6秒前
璇22发布了新的文献求助10
7秒前
7秒前
汉堡包应助研友_LpQ3rn采纳,获得10
7秒前
万能图书馆应助ikun采纳,获得10
7秒前
月明星稀完成签到,获得积分0
7秒前
7秒前
蜂蜜完成签到,获得积分10
7秒前
江江完成签到 ,获得积分10
8秒前
企鹅完成签到,获得积分10
8秒前
归尘发布了新的文献求助10
8秒前
Ava应助momosijia采纳,获得10
8秒前
8秒前
LBJ完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Aero发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015