Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system

交叉模态 记忆电阻器 计算机科学 可穿戴计算机 神经形态工程学 神经科学 人工智能 感知 嵌入式系统 工程类 人工神经网络 生物 视觉感受 电子工程
作者
Zhiyuan Li,Zhongshao Li,Wei Tang,Jiaping Yao,Zhipeng Dou,Junjie Gong,Yongfei Li,Beining Zhang,Yunxiao Dong,Jian Xia,Lin Sun,Peng Jiang,Xun Cao,Rui Yang,Xiangshui Miao,Ronggui Yang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:5
标识
DOI:10.1038/s41467-024-51609-x
摘要

Abstract Constructing crossmodal in-sensor processing system based on high-performance flexible devices is of great significance for the development of wearable human-machine interfaces. A bio-inspired crossmodal in-sensor computing system can perform real-time energy-efficient processing of multimodal signals, alleviating data conversion and transmission between different modules in conventional chips. Here, we report a bio-inspired crossmodal spiking sensory neuron (CSSN) based on a flexible VO 2 memristor, and demonstrate a crossmodal in-sensor encoding and computing system for wearable human-machine interfaces. We demonstrate excellent performance in the VO 2 memristor including endurance (>10 12 ), uniformity (0.72% for cycle-to-cycle variations and 3.73% for device-to-device variations), speed (<30 ns), and flexibility (bendable to a curvature radius of 1 mm). A flexible hardware processing system is implemented based on the CSSN, which can directly perceive and encode pressure and temperature bimodal information into spikes, and then enables the real-time haptic-feedback for human-machine interaction. We successfully construct a crossmodal in-sensor spiking reservoir computing system via the CSSNs, which can achieve dynamic objects identification with a high accuracy of 98.1% and real-time signal feedback. This work provides a feasible approach for constructing flexible bio-inspired crossmodal in-sensor computing systems for wearable human-machine interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hanmos3624完成签到,获得积分10
3秒前
3秒前
jxm驳回了Jasper应助
3秒前
五五发布了新的文献求助10
5秒前
慕青应助早茶可口采纳,获得10
5秒前
lina发布了新的文献求助10
6秒前
6秒前
7秒前
LZ发布了新的文献求助10
7秒前
7秒前
Kevin完成签到,获得积分10
9秒前
传奇3应助林士采纳,获得10
10秒前
HH发布了新的文献求助30
11秒前
自然1111发布了新的文献求助30
11秒前
12秒前
轻松千山发布了新的文献求助10
13秒前
LZ完成签到,获得积分10
13秒前
15秒前
15秒前
JamesPei应助薇笑不慌采纳,获得10
16秒前
充电宝应助WZJ采纳,获得10
17秒前
hz52发布了新的文献求助30
17秒前
Liao完成签到,获得积分10
17秒前
林结衣完成签到,获得积分10
18秒前
18秒前
18秒前
赞zan发布了新的文献求助30
19秒前
12完成签到 ,获得积分10
20秒前
尼i完成签到,获得积分10
20秒前
文城完成签到 ,获得积分10
21秒前
Ava应助yyt采纳,获得10
22秒前
曾经的孤萍完成签到,获得积分20
23秒前
luan完成签到,获得积分10
24秒前
24秒前
缓慢的谷秋应助坚强枫采纳,获得10
25秒前
赞zan完成签到,获得积分10
26秒前
27秒前
鲤鱼梦易发布了新的文献求助10
28秒前
灰灰灰发布了新的文献求助20
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150