MAPK/ERK通路
细胞生物学
菊粉
细胞粘附
细胞
化学
粘附
细胞生长
细胞损伤
癌症研究
细胞凋亡
信号转导
生物
生物化学
有机化学
作者
Qin-Yao Zhang,Ming-Quan Lai,Yu-Kui Chen,Mei-Ting Zhong,Min Gi,Qi Wang,Xiao‐Li Xie
标识
DOI:10.1016/j.envpol.2024.124974
摘要
GenX, a substitute for perfluorooctanoic acid, has demonstrated potential enterotoxicity. The enterotoxic effects of GenX and effective interventions need further investigation. In the present study, the mice were administered GenX (2 mg/kg/day) with or without inulin supplementation (5 g/kg/day) for 12 weeks. Histopathological assessments revealed that GenX induced colonic gland atrophy, inflammatory cell infiltration, a reduction in goblet cell numbers, and decreased mucus secretion. Furthermore, a significant decrease in the protein levels of ZO-1, occludin, and claudin-5 indicated compromised barrier integrity. Transcriptomic analysis identified 2645 DEGs, which were mapped to 39 significant pathways. The TGF-β, BMP6, and β-catenin proteins were upregulated in the intestinal mucosa following GenX exposure, indicating activation of the TGF-β pathway. Conversely, the protein expression of PAK3, CyclinD2, contactin1, and Jam2 decreased, indicating disruptions in cell cycle progression and cell adhesion. Inulin cotreatment ameliorated these GenX-induced alterations, partially through modulating the MAPK pathway, as evidenced by the upregulation of the cell cycle and cell adhesion proteins. Collectively, these findings suggested that GenX exposure triggered intestinal injury in mice by activating the TGF-β pathway and disrupting proteins crucial for the cell cycle and cell adhesion, whereas inulin supplementation mitigated this injury by modulating the MAPK pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI