Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 操作系统 图像检索
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zaı̈ane
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106546-106546 被引量:36
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助慧灰huihui采纳,获得10
刚刚
乐观健柏完成签到,获得积分10
1秒前
3秒前
CodeCraft应助大橙子采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
jeeya完成签到,获得积分10
5秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
伦语发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
xuzj应助科研通管家采纳,获得10
7秒前
xuzj应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
yull完成签到,获得积分10
8秒前
小巧书雪完成签到,获得积分10
11秒前
大大怪将军完成签到,获得积分10
12秒前
哈哈哈完成签到 ,获得积分0
12秒前
小怪完成签到,获得积分10
13秒前
爱吃泡芙完成签到,获得积分10
14秒前
白桃战士完成签到,获得积分10
15秒前
17秒前
qingchenwuhou完成签到 ,获得积分10
17秒前
XXX完成签到,获得积分10
18秒前
锡嘻完成签到 ,获得积分10
18秒前
19秒前
彗星入梦完成签到 ,获得积分10
19秒前
恋恋青葡萄完成签到,获得积分10
19秒前
隐形万言完成签到,获得积分10
21秒前
Time完成签到,获得积分10
21秒前
土木研学僧完成签到,获得积分10
22秒前
yjy完成签到 ,获得积分10
22秒前
A溶大美噶完成签到,获得积分10
22秒前
yar应助萨尔莫斯采纳,获得10
23秒前
Will发布了新的文献求助10
23秒前
美好的鹏笑完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022