Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 操作系统 图像检索
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zaı̈ane
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106546-106546 被引量:29
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
幸福大白发布了新的文献求助10
2秒前
王宇宁发布了新的文献求助10
2秒前
2秒前
Jasper应助欧耶采纳,获得10
3秒前
香蕉觅云应助yyyyyyy采纳,获得10
4秒前
GL发布了新的文献求助10
4秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
10秒前
小杨完成签到 ,获得积分10
11秒前
yyz发布了新的文献求助10
12秒前
13秒前
欧耶发布了新的文献求助10
15秒前
YY张完成签到,获得积分20
15秒前
17秒前
17秒前
Joyce完成签到,获得积分10
18秒前
万能图书馆应助悦耳昊强采纳,获得10
19秒前
19秒前
天真的不尤完成签到 ,获得积分10
20秒前
悄悄睡觉完成签到 ,获得积分10
21秒前
小仙女发布了新的文献求助30
21秒前
小晓发布了新的文献求助10
21秒前
22秒前
领导范儿应助无限飞丹采纳,获得10
22秒前
美好的秋烟完成签到,获得积分20
23秒前
23秒前
幸福大白发布了新的文献求助30
24秒前
哒哒哒发布了新的文献求助10
25秒前
悦耳昊强完成签到,获得积分20
30秒前
打打应助顺利紫山采纳,获得10
31秒前
CR7应助ZONG采纳,获得20
32秒前
可爱的函函应助77采纳,获得10
32秒前
科研通AI2S应助李健采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176