Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 操作系统 图像检索
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zai͏̈ane
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106546-106546 被引量:4
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DLL完成签到 ,获得积分10
1秒前
momo发布了新的文献求助10
1秒前
风中的怀绿完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
聪明白羊完成签到,获得积分10
6秒前
Amuro发布了新的文献求助30
6秒前
7秒前
胡几枚完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
花开富贵完成签到,获得积分10
9秒前
深深深海完成签到,获得积分10
10秒前
科研通AI2S应助七七八八采纳,获得10
10秒前
11秒前
11秒前
要开心发布了新的文献求助10
12秒前
大个应助jekin采纳,获得10
12秒前
孟孟完成签到,获得积分10
12秒前
花开富贵发布了新的文献求助10
12秒前
wenze发布了新的文献求助10
13秒前
zhumengyu发布了新的文献求助10
13秒前
Owen应助sky采纳,获得10
15秒前
Singularity应助ss采纳,获得10
15秒前
15秒前
孟孟发布了新的文献求助10
15秒前
天天快乐应助bluesky采纳,获得10
16秒前
薄桉发布了新的文献求助10
16秒前
16秒前
Akim应助袁月辉采纳,获得10
17秒前
传奇3应助dw采纳,获得10
18秒前
科研通AI2S应助1177采纳,获得10
19秒前
Amuro完成签到,获得积分10
20秒前
22秒前
cxzhao完成签到,获得积分10
22秒前
22秒前
怎么睡不醒完成签到 ,获得积分10
23秒前
烂漫小鸭子完成签到,获得积分20
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046