Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 操作系统 图像检索
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zaı̈ane
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106546-106546 被引量:29
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hollow发布了新的文献求助10
2秒前
4秒前
常琳琳发布了新的文献求助10
4秒前
4秒前
LL完成签到,获得积分10
4秒前
深情安青应助slx采纳,获得10
4秒前
5秒前
5秒前
如意枫叶发布了新的文献求助10
5秒前
FashionBoy应助03采纳,获得10
7秒前
7秒前
幸福大白发布了新的文献求助30
7秒前
充电宝应助展希希采纳,获得10
9秒前
诚心谷南发布了新的文献求助10
10秒前
舒服的元瑶完成签到 ,获得积分10
10秒前
MEDwhy发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
雨天完成签到,获得积分10
12秒前
思源应助一支布洛芬采纳,获得10
13秒前
13秒前
璀璨完成签到,获得积分10
17秒前
JamesPei应助虚幻秋白采纳,获得10
17秒前
YJ888发布了新的文献求助10
18秒前
思源应助Hollow采纳,获得10
19秒前
19秒前
19秒前
盐植物完成签到,获得积分10
19秒前
20秒前
evans完成签到,获得积分10
21秒前
sanwan完成签到,获得积分10
22秒前
李健的小迷弟应助橙子采纳,获得10
24秒前
24秒前
25秒前
25秒前
孟德尔的豌豆完成签到,获得积分20
26秒前
yw11发布了新的文献求助10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176