Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 图像检索 操作系统
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zäıane
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106546-106546 被引量:52
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
死亦生矣完成签到 ,获得积分10
2秒前
魄渊发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
坚果完成签到,获得积分10
3秒前
Lmy发布了新的文献求助10
3秒前
sk发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
华仔应助180198采纳,获得30
5秒前
hongjing发布了新的文献求助10
5秒前
5秒前
肃肃其羽完成签到 ,获得积分10
5秒前
5秒前
5秒前
SciGPT应助米卡采纳,获得10
5秒前
根瘤君发布了新的文献求助10
6秒前
6秒前
优雅山柏发布了新的文献求助10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
小青椒应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
脑洞疼应助zyro采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
小小何完成签到,获得积分10
7秒前
Lucas应助科研通管家采纳,获得100
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928