Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 图像检索 操作系统
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zäıane
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106546-106546 被引量:52
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助山君采纳,获得10
刚刚
婉枫完成签到,获得积分10
刚刚
科研通AI6应助博姐37采纳,获得10
刚刚
危机的煎蛋完成签到 ,获得积分10
1秒前
可爱的函函应助hanyue采纳,获得10
1秒前
优雅的化蛹完成签到,获得积分10
1秒前
LX完成签到,获得积分10
2秒前
2秒前
2秒前
Stella应助阿超采纳,获得10
3秒前
1111222发布了新的文献求助10
3秒前
浮游应助呆毛采纳,获得10
3秒前
唐唐88完成签到,获得积分10
4秒前
4秒前
雪影完成签到 ,获得积分10
4秒前
稳重冰岚完成签到,获得积分10
4秒前
4秒前
5秒前
Reybor完成签到,获得积分10
5秒前
cccxxx完成签到,获得积分10
5秒前
大气指甲油完成签到,获得积分10
5秒前
好好完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
研友_8WdzPL发布了新的文献求助10
7秒前
9秒前
NaN应助某亮采纳,获得10
9秒前
研友_nPPERn完成签到,获得积分10
9秒前
badminton完成签到,获得积分10
9秒前
9秒前
thchiang发布了新的文献求助10
10秒前
Tiger完成签到,获得积分10
10秒前
10秒前
yy完成签到,获得积分10
11秒前
小张在进步完成签到,获得积分10
11秒前
hk发布了新的文献求助10
11秒前
晴朗完成签到 ,获得积分10
11秒前
泡芙完成签到,获得积分10
11秒前
treasure完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585080
求助须知:如何正确求助?哪些是违规求助? 4668887
关于积分的说明 14772970
捐赠科研通 4616734
什么是DOI,文献DOI怎么找? 2530315
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641