Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 操作系统 图像检索
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zäıane
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106546-106546 被引量:52
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xie发布了新的文献求助10
刚刚
细腻的南霜完成签到,获得积分10
刚刚
1秒前
Owen应助香蕉猴子啦啦啦采纳,获得10
1秒前
等等完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
脑洞疼应助平淡的柜子采纳,获得10
2秒前
Lucas应助小盒采纳,获得10
3秒前
知榕发布了新的文献求助10
5秒前
hbgcld发布了新的文献求助80
5秒前
彭于晏应助Xie采纳,获得10
5秒前
foreverwhy完成签到 ,获得积分10
6秒前
Linsysen发布了新的文献求助10
6秒前
烟花应助约定看星星啊采纳,获得10
7秒前
7秒前
小二郎应助abbytang采纳,获得10
8秒前
10秒前
weifang_liang发布了新的文献求助10
12秒前
Cot90完成签到,获得积分10
13秒前
是我呀吼完成签到,获得积分20
13秒前
多花基因完成签到,获得积分10
13秒前
ding应助zengtsinghua采纳,获得10
14秒前
14秒前
今后应助李联洪采纳,获得10
15秒前
sunjianyu完成签到,获得积分10
15秒前
科目三应助hbgcld采纳,获得80
15秒前
大蛋发布了新的文献求助10
16秒前
16秒前
polop_potato发布了新的文献求助10
18秒前
20秒前
20秒前
Owen应助LPH01采纳,获得10
20秒前
李爱国应助Linsysen采纳,获得10
21秒前
22秒前
于铭涵完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181693
求助须知:如何正确求助?哪些是违规求助? 4368600
关于积分的说明 13603680
捐赠科研通 4219863
什么是DOI,文献DOI怎么找? 2314259
邀请新用户注册赠送积分活动 1313000
关于科研通互助平台的介绍 1261716