Research on high-precision angular measurement based on machine learning and optical vortex interference technology

干扰(通信) 涡流 旋涡 光学 计算机科学 物理 电信 频道(广播) 气象学
作者
Xiaoxia Zhang,Donge Zhao,Yayun Ma,Xuefeng Yang,Wenbo Chu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115014-115014
标识
DOI:10.1088/1361-6501/ad6207
摘要

Abstract The paper innovatively constructs a regression prediction model based on the Stacking ensemble learning algorithm by utilizing the distortion degree of vortex optical interference patterns, achieving high-precision measurement of small angles. It constructs a regression prediction model based on the Stacking ensemble learning algorithm. Initially, in the spiral optical conjugate interference system, minute variations in the optical axis yield corresponding interference patterns, within an angle range of 0.0006° to 0.3°. The angle formed between the centroids of the upper two petals in the deformed interference patterns and the center is extracted as a feature for feature extraction. A dataset is established and randomly divided into training, validation, and testing sets in a 6:2:2 ratio. Subsequently, four models—support vector regression, particle swarm optimization back propagation, Gaussian process regression, and the stacking ensemble algorithm—are optimized for hyperparameters, trained, and evaluated based on coefficients of determination, root mean square error, and mean absolute error to compare their predictive performance. Through multiple rounds of training and prediction on randomly partitioned datasets, it is evident that the ensemble model exhibits a reduction in relative error compared to single learners, demonstrating that the Stacking-based ensemble algorithm can combine the strengths of base learners, showcasing superior predictive performance and enhanced stability. Moreover, the Stacking ensemble model achieves a measurement precision of 0.0006°, with a relative error maintained within 0.6%, indicating the feasibility of achieving high-precision measurement of tiny angles in the optical axis using machine learning and spiral optical conjugate interference systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小铃铛发布了新的文献求助10
刚刚
楠楠完成签到 ,获得积分10
刚刚
勤劳糜发布了新的文献求助10
刚刚
lqllll完成签到,获得积分10
1秒前
丫丫发布了新的文献求助10
2秒前
4秒前
科研通AI2S应助哈哈哈采纳,获得10
4秒前
5秒前
好好做人发布了新的文献求助10
6秒前
凡迪亚比完成签到,获得积分10
8秒前
愉快的芒果完成签到,获得积分10
9秒前
lkz发布了新的文献求助10
10秒前
11秒前
Coraline应助虚幻莫英采纳,获得10
12秒前
小虎应助小铃铛采纳,获得10
12秒前
tunerling完成签到,获得积分10
14秒前
愉快书琴完成签到,获得积分10
15秒前
叮当完成签到,获得积分10
15秒前
好好做人完成签到,获得积分20
17秒前
木穹完成签到,获得积分0
17秒前
小龅牙吖完成签到,获得积分10
18秒前
叮当发布了新的文献求助10
18秒前
19秒前
小气鬼完成签到,获得积分20
21秒前
21秒前
Jenny发布了新的文献求助10
24秒前
iNk应助morph采纳,获得20
24秒前
rh1006发布了新的文献求助10
25秒前
星辰大海应助机灵的孤云采纳,获得10
27秒前
王大壮发布了新的文献求助10
27秒前
希望天下0贩的0应助zzz采纳,获得10
27秒前
Huang完成签到,获得积分10
29秒前
自信南霜完成签到 ,获得积分10
29秒前
情怀应助Jenny采纳,获得10
32秒前
15122303完成签到,获得积分10
33秒前
Ya完成签到,获得积分10
34秒前
吴海娇完成签到,获得积分10
39秒前
田様应助晨熙采纳,获得10
40秒前
正直的魔镜完成签到 ,获得积分10
42秒前
sisyphus_yy完成签到 ,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343