Research on high-precision angular measurement based on machine learning and optical vortex interference technology

干扰(通信) 涡流 旋涡 光学 计算机科学 物理 电信 频道(广播) 气象学
作者
Xiaoxia Zhang,Donge Zhao,Yayun Ma,Xuefeng Yang,Wenbo Chu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6207
摘要

Abstract The distortion degree of the interference pattern of vortex light is measured to achieve high-precision measurement of small angles. In this paper, a regression prediction model based on the Stacking ensemble learning algorithm is constructed. Firstly, by altering the optical axis at small angles within the range of 0.0006° to 0.3° in a vortex optical conjugate interference system, corresponding interference patterns were obtained. The angle formed by the centroids of the upper two petals of the deformed interference patterns and the center was extracted as a feature for dataset construction. The dataset was randomly split into training and testing sets in a 7:3 ratio. Secondly, four models, including SVR, PSO-BP, GPR, and Stacking ensemble algorithm, were optimized for hyperparameters, trained, and evaluated. Comparative analysis of prediction performance was conducted using coefficients of determination, root mean square errors, and mean absolute errors. Based on multiple random splits of the dataset for training and prediction, it was observed that compared to single learners, the ensemble model reduced the average relative error by 0.2829%, demonstrating better prediction performance and stronger stability by combining the advantages of primary learners. Additionally, the Stacking model achieved a measurement accuracy of 0.0006°, with the relative error maintained within 0.6%, indicating the feasibility of high-precision measurement of optical axis micro-angles using machine learning and vortex optical conjugate interference systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
minever白完成签到,获得积分10
1秒前
可爱的函函应助ddl7采纳,获得30
2秒前
科研通AI2S应助xhp采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
kingwill应助普通市民7v7采纳,获得20
3秒前
3秒前
熙熙关注了科研通微信公众号
3秒前
科研通AI5应助滴滴哒采纳,获得10
3秒前
小星发布了新的文献求助10
4秒前
赵徐娃发布了新的文献求助10
4秒前
马里奥爱科研完成签到,获得积分10
4秒前
4秒前
4秒前
小蘑菇应助热情的戾采纳,获得10
5秒前
SPQR发布了新的文献求助10
6秒前
yxw发布了新的文献求助10
6秒前
多多发SCI发布了新的文献求助30
6秒前
7秒前
lingyan hu发布了新的文献求助10
7秒前
grace发布了新的文献求助10
8秒前
10秒前
zayne完成签到 ,获得积分10
10秒前
许中原完成签到,获得积分10
10秒前
芝麻发布了新的文献求助10
10秒前
10秒前
LL发布了新的文献求助10
10秒前
介电发nature完成签到,获得积分10
11秒前
汉堡包应助西西采纳,获得10
13秒前
科研通AI5应助高木同学采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助sun采纳,获得10
13秒前
完美世界应助六个核桃采纳,获得10
14秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476452
求助须知:如何正确求助?哪些是违规求助? 3068067
关于积分的说明 9106438
捐赠科研通 2759609
什么是DOI,文献DOI怎么找? 1514156
邀请新用户注册赠送积分活动 700093
科研通“疑难数据库(出版商)”最低求助积分说明 699284