Connectivity study on resting-state EEG between motor imagery BCI-literate and BCI-illiterate groups

脑-机接口 运动表象 脑电图 静息状态功能磁共振成像 心理学 计算机科学 神经科学
作者
Hanjin Park,Sung Chan Jun
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad6187
摘要

Abstract Objective. Although Motor Imagery-based Brain-Computer Interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity’s significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state EEG network differs between BCI-literacy and -illiteracy. Approach. To address the issues above, we analysed three large public EEG datasets using three functional connectivity (FC) and three effective connectivity (EC) metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for Multivariate Granger Causality (MVGC). The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found. Significance. Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction’s accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助S7采纳,获得10
刚刚
平淡新晴发布了新的文献求助10
1秒前
1秒前
英俊的铭应助YI123456采纳,获得10
1秒前
3秒前
赘婿应助迷路的十四采纳,获得10
3秒前
Twonej应助清蒸鱼采纳,获得30
3秒前
是~巧呀发布了新的文献求助10
3秒前
想躺平完成签到,获得积分20
3秒前
pluto应助Alex采纳,获得10
3秒前
脑洞疼应助xjc采纳,获得10
3秒前
3秒前
性感的面条完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
是阿刁完成签到,获得积分10
4秒前
归尘应助xxw采纳,获得10
5秒前
Orange应助大头驴采纳,获得10
5秒前
5秒前
6秒前
moonlight发布了新的文献求助10
6秒前
於沅完成签到,获得积分10
6秒前
LIU完成签到,获得积分10
6秒前
小马嘻嘻发布了新的文献求助10
7秒前
8秒前
迷路的含桃完成签到 ,获得积分10
8秒前
zoe发布了新的文献求助10
8秒前
chx8830316发布了新的文献求助10
9秒前
fu关闭了fu文献求助
9秒前
9秒前
dldlwzdl发布了新的文献求助10
9秒前
royal完成签到,获得积分10
9秒前
杨三完成签到,获得积分10
10秒前
轻吟发布了新的文献求助10
10秒前
Orange应助kaia采纳,获得10
10秒前
邢大宝完成签到,获得积分10
10秒前
xuexue发布了新的文献求助10
10秒前
11秒前
科研废物完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611