Connectivity study on resting-state EEG between motor imagery BCI-literate and BCI-illiterate groups

脑-机接口 运动表象 脑电图 静息状态功能磁共振成像 心理学 计算机科学 神经科学
作者
Hanjin Park,Sung Chan Jun
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad6187
摘要

Abstract Objective. Although Motor Imagery-based Brain-Computer Interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity’s significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state EEG network differs between BCI-literacy and -illiteracy. Approach. To address the issues above, we analysed three large public EEG datasets using three functional connectivity (FC) and three effective connectivity (EC) metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for Multivariate Granger Causality (MVGC). The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found. Significance. Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction’s accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
2秒前
清秀大方嘤嘤猴完成签到,获得积分10
2秒前
JamesPei应助Rrz采纳,获得10
2秒前
上官若男应助Hey采纳,获得10
3秒前
1111发布了新的文献求助10
4秒前
4秒前
尔玉发布了新的文献求助10
6秒前
weixun完成签到,获得积分10
6秒前
6秒前
eli完成签到,获得积分10
7秒前
苹果蜗牛发布了新的文献求助10
7秒前
7秒前
ctc发布了新的文献求助10
7秒前
小二郎应助嘿嘿哈采纳,获得10
8秒前
热情十三完成签到 ,获得积分10
8秒前
小小鱼发布了新的文献求助10
9秒前
江江发布了新的文献求助10
9秒前
unique完成签到,获得积分20
9秒前
orixero应助彬墩墩采纳,获得10
9秒前
zhongyinanke完成签到 ,获得积分10
9秒前
zz发布了新的文献求助10
10秒前
10秒前
10秒前
ANQ完成签到,获得积分20
11秒前
勤奋绿旋发布了新的文献求助10
11秒前
CipherSage应助fengw420采纳,获得10
11秒前
Sky完成签到,获得积分10
11秒前
李健的小迷弟应助柯卿彦采纳,获得10
12秒前
mmy完成签到 ,获得积分10
12秒前
义气莫茗应助无聊的凉面采纳,获得20
13秒前
13秒前
puff完成签到,获得积分10
13秒前
14秒前
14秒前
嘀哩呱啦啦完成签到 ,获得积分10
14秒前
大饼完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299407
求助须知:如何正确求助?哪些是违规求助? 2934304
关于积分的说明 8468360
捐赠科研通 2607808
什么是DOI,文献DOI怎么找? 1423855
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645424