重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

FedSHE: privacy preserving and efficient federated learning with adaptive segmented CKKS homomorphic encryption

同态加密 计算机科学 加密 计算机安全
作者
Y. H. Pan,Chao Zheng,He Wang,Jing Yang,Hongjia Li,Wang Li-ming
出处
期刊:Cybersecurity [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42400-024-00232-w
摘要

Abstract Unprotected gradient exchange in federated learning (FL) systems may lead to gradient leakage-related attacks. CKKS is a promising approximate homomorphic encryption scheme to protect gradients, owing to its unique capability of performing operations directly on ciphertexts. However, configuring CKKS security parameters involves a trade-off between correctness, efficiency, and security. An evaluation gap exists regarding how these parameters impact computational performance. Additionally, the maximum vector length that CKKS can once encrypt, recommended by Homomorphic Encryption Standardization, is 16384, hampers its widespread adoption in FL when encrypting layers with numerous neurons. To protect gradients’ privacy in FL systems while maintaining practical performance, we comprehensively analyze the influence of security parameters such as polynomial modulus degree and coefficient modulus on homomorphic operations. Derived from our evaluation findings, we provide a method for selecting the optimal multiplication depth while meeting operational requirements. Then, we introduce an adaptive segmented encryption method tailored for CKKS, circumventing its encryption length constraint and enhancing its processing ability to encrypt neural network models. Finally, we present FedSHE , a privacy-preserving and efficient Fed erated learning scheme with adaptive S egmented CKKS H omomorphic E ncryption. FedSHE is implemented on top of the federated averaging (FedAvg) algorithm and is available at https://github.com/yooopan/FedSHE . Our evaluation results affirm the correctness and effectiveness of our proposed method, demonstrating that FedSHE outperforms existing homomorphic encryption-based federated learning research efforts in terms of model accuracy, computational efficiency, communication cost, and security level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci发布了新的文献求助70
刚刚
Xaoyie发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
么嗷苗发布了新的文献求助10
1秒前
风吹麦田应助zqc333采纳,获得30
2秒前
小小蚂蚁完成签到,获得积分10
2秒前
oasis完成签到,获得积分10
2秒前
2秒前
大个应助高高的钢铁侠采纳,获得10
2秒前
科研通AI6应助韓小慧采纳,获得10
3秒前
liuxinying完成签到,获得积分10
3秒前
zjujirenjie发布了新的文献求助10
3秒前
Vicee完成签到,获得积分10
3秒前
4秒前
葛洪成完成签到,获得积分20
4秒前
YYC发布了新的文献求助10
4秒前
Lucas应助甜蜜乐松采纳,获得10
4秒前
miumiu完成签到,获得积分10
4秒前
冲绳巨人完成签到,获得积分10
5秒前
蚊蚊爱读书应助蕯匿采纳,获得10
5秒前
5秒前
浪子完成签到,获得积分10
5秒前
蛋蛋完成签到,获得积分20
6秒前
大模型应助李佳洲采纳,获得10
6秒前
pahuang发布了新的文献求助50
6秒前
TYMX完成签到,获得积分10
7秒前
7秒前
友好板栗发布了新的文献求助10
7秒前
梅子酒发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
好运6连发布了新的文献求助10
10秒前
miumiu发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516