FedSHE: privacy preserving and efficient federated learning with adaptive segmented CKKS homomorphic encryption

同态加密 计算机科学 加密 计算机安全
作者
Y. H. Pan,Chao Zheng,He Wang,Jing Yang,Hongjia Li,Wang Li-ming
出处
期刊:Cybersecurity [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42400-024-00232-w
摘要

Abstract Unprotected gradient exchange in federated learning (FL) systems may lead to gradient leakage-related attacks. CKKS is a promising approximate homomorphic encryption scheme to protect gradients, owing to its unique capability of performing operations directly on ciphertexts. However, configuring CKKS security parameters involves a trade-off between correctness, efficiency, and security. An evaluation gap exists regarding how these parameters impact computational performance. Additionally, the maximum vector length that CKKS can once encrypt, recommended by Homomorphic Encryption Standardization, is 16384, hampers its widespread adoption in FL when encrypting layers with numerous neurons. To protect gradients’ privacy in FL systems while maintaining practical performance, we comprehensively analyze the influence of security parameters such as polynomial modulus degree and coefficient modulus on homomorphic operations. Derived from our evaluation findings, we provide a method for selecting the optimal multiplication depth while meeting operational requirements. Then, we introduce an adaptive segmented encryption method tailored for CKKS, circumventing its encryption length constraint and enhancing its processing ability to encrypt neural network models. Finally, we present FedSHE , a privacy-preserving and efficient Fed erated learning scheme with adaptive S egmented CKKS H omomorphic E ncryption. FedSHE is implemented on top of the federated averaging (FedAvg) algorithm and is available at https://github.com/yooopan/FedSHE . Our evaluation results affirm the correctness and effectiveness of our proposed method, demonstrating that FedSHE outperforms existing homomorphic encryption-based federated learning research efforts in terms of model accuracy, computational efficiency, communication cost, and security level.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syy完成签到 ,获得积分10
刚刚
丘比特应助山楂采纳,获得10
刚刚
1秒前
1秒前
2秒前
4秒前
天天完成签到 ,获得积分10
4秒前
6秒前
asdfqwer应助wfk采纳,获得10
6秒前
7秒前
zyt发布了新的文献求助10
9秒前
10秒前
Ting发布了新的文献求助10
11秒前
11秒前
13秒前
一颗egg发布了新的文献求助30
13秒前
朴素的不乐完成签到 ,获得积分10
14秒前
14秒前
XS_QI发布了新的文献求助10
14秒前
忧心的鞋子完成签到,获得积分10
16秒前
16秒前
AoAoo完成签到,获得积分10
17秒前
王壮壮完成签到,获得积分10
17秒前
snail01完成签到,获得积分10
18秒前
bio生物发布了新的文献求助10
18秒前
Orange应助积极万声采纳,获得10
18秒前
20秒前
22秒前
22秒前
22秒前
隐形曼青应助zjh采纳,获得10
22秒前
suy发布了新的文献求助10
23秒前
24秒前
26秒前
程瑞哲发布了新的文献求助80
26秒前
28秒前
smy发布了新的文献求助10
28秒前
唯美完成签到,获得积分10
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869564
求助须知:如何正确求助?哪些是违规求助? 6453599
关于积分的说明 15661432
捐赠科研通 4985461
什么是DOI,文献DOI怎么找? 2688396
邀请新用户注册赠送积分活动 1630824
关于科研通互助平台的介绍 1588937