FedSHE: privacy preserving and efficient federated learning with adaptive segmented CKKS homomorphic encryption

同态加密 计算机科学 加密 计算机安全
作者
Y. H. Pan,Chao Zheng,He Wang,Jing Yang,Hongjia Li,Wang Li-ming
出处
期刊:Cybersecurity [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42400-024-00232-w
摘要

Abstract Unprotected gradient exchange in federated learning (FL) systems may lead to gradient leakage-related attacks. CKKS is a promising approximate homomorphic encryption scheme to protect gradients, owing to its unique capability of performing operations directly on ciphertexts. However, configuring CKKS security parameters involves a trade-off between correctness, efficiency, and security. An evaluation gap exists regarding how these parameters impact computational performance. Additionally, the maximum vector length that CKKS can once encrypt, recommended by Homomorphic Encryption Standardization, is 16384, hampers its widespread adoption in FL when encrypting layers with numerous neurons. To protect gradients’ privacy in FL systems while maintaining practical performance, we comprehensively analyze the influence of security parameters such as polynomial modulus degree and coefficient modulus on homomorphic operations. Derived from our evaluation findings, we provide a method for selecting the optimal multiplication depth while meeting operational requirements. Then, we introduce an adaptive segmented encryption method tailored for CKKS, circumventing its encryption length constraint and enhancing its processing ability to encrypt neural network models. Finally, we present FedSHE , a privacy-preserving and efficient Fed erated learning scheme with adaptive S egmented CKKS H omomorphic E ncryption. FedSHE is implemented on top of the federated averaging (FedAvg) algorithm and is available at https://github.com/yooopan/FedSHE . Our evaluation results affirm the correctness and effectiveness of our proposed method, demonstrating that FedSHE outperforms existing homomorphic encryption-based federated learning research efforts in terms of model accuracy, computational efficiency, communication cost, and security level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liguilong完成签到,获得积分20
1秒前
1秒前
3秒前
liguilong发布了新的文献求助10
3秒前
李总要发财小苏发文章完成签到,获得积分10
5秒前
如意2023发布了新的文献求助10
5秒前
666发布了新的文献求助10
5秒前
俭朴的一曲完成签到,获得积分10
6秒前
7秒前
222发布了新的文献求助10
9秒前
10秒前
研友_VZG7GZ应助甝虪采纳,获得10
15秒前
mingming发布了新的文献求助10
15秒前
赘婿应助成就红牛采纳,获得10
16秒前
桐桐应助222采纳,获得10
16秒前
魔猿应助Psy采纳,获得10
18秒前
mingming完成签到,获得积分20
19秒前
23秒前
充电宝应助mingming采纳,获得10
25秒前
章章完成签到 ,获得积分10
25秒前
qinjiayin发布了新的文献求助20
28秒前
Awei发布了新的文献求助10
29秒前
31秒前
兜有米发布了新的文献求助30
33秒前
chenhua5460发布了新的文献求助10
37秒前
37秒前
38秒前
超级如风完成签到,获得积分10
39秒前
40秒前
NoMigraine完成签到,获得积分10
41秒前
老实向雁发布了新的文献求助10
42秒前
xunl发布了新的文献求助10
43秒前
mingming发布了新的文献求助10
44秒前
202483067完成签到 ,获得积分10
45秒前
xunl完成签到,获得积分10
50秒前
CodeCraft应助海德堡采纳,获得10
53秒前
颖火虫2588完成签到,获得积分10
56秒前
mingming发布了新的文献求助10
57秒前
tong完成签到,获得积分10
58秒前
汉堡包应助shinn采纳,获得10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468