FedSHE: privacy preserving and efficient federated learning with adaptive segmented CKKS homomorphic encryption

同态加密 计算机科学 加密 计算机安全
作者
Y. H. Pan,Chao Zheng,He Wang,Jing Yang,Hongjia Li,Wang Li-ming
出处
期刊:Cybersecurity [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42400-024-00232-w
摘要

Abstract Unprotected gradient exchange in federated learning (FL) systems may lead to gradient leakage-related attacks. CKKS is a promising approximate homomorphic encryption scheme to protect gradients, owing to its unique capability of performing operations directly on ciphertexts. However, configuring CKKS security parameters involves a trade-off between correctness, efficiency, and security. An evaluation gap exists regarding how these parameters impact computational performance. Additionally, the maximum vector length that CKKS can once encrypt, recommended by Homomorphic Encryption Standardization, is 16384, hampers its widespread adoption in FL when encrypting layers with numerous neurons. To protect gradients’ privacy in FL systems while maintaining practical performance, we comprehensively analyze the influence of security parameters such as polynomial modulus degree and coefficient modulus on homomorphic operations. Derived from our evaluation findings, we provide a method for selecting the optimal multiplication depth while meeting operational requirements. Then, we introduce an adaptive segmented encryption method tailored for CKKS, circumventing its encryption length constraint and enhancing its processing ability to encrypt neural network models. Finally, we present FedSHE , a privacy-preserving and efficient Fed erated learning scheme with adaptive S egmented CKKS H omomorphic E ncryption. FedSHE is implemented on top of the federated averaging (FedAvg) algorithm and is available at https://github.com/yooopan/FedSHE . Our evaluation results affirm the correctness and effectiveness of our proposed method, demonstrating that FedSHE outperforms existing homomorphic encryption-based federated learning research efforts in terms of model accuracy, computational efficiency, communication cost, and security level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨醉巷完成签到 ,获得积分10
1秒前
medlive2020发布了新的文献求助10
1秒前
科研老白完成签到,获得积分10
2秒前
2秒前
友好山菡发布了新的文献求助10
3秒前
reneeyan58完成签到,获得积分10
3秒前
4秒前
duoduo完成签到,获得积分10
4秒前
小王要读博完成签到,获得积分20
5秒前
安详的大象完成签到 ,获得积分10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
巴图鲁完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
medlive2020完成签到,获得积分20
8秒前
Sue发布了新的文献求助10
8秒前
cxl666完成签到,获得积分10
8秒前
Tina_YTT关注了科研通微信公众号
8秒前
小桑桑完成签到,获得积分10
8秒前
小罗完成签到,获得积分20
8秒前
虚拟的函完成签到,获得积分20
9秒前
Kk完成签到,获得积分10
9秒前
李爱国应助聪明飞雪采纳,获得10
9秒前
9秒前
Eman完成签到,获得积分10
10秒前
星辰大海应助圆圆采纳,获得10
10秒前
11秒前
左飞扬完成签到,获得积分20
11秒前
XY完成签到,获得积分10
11秒前
赵浩宇完成签到,获得积分10
11秒前
11秒前
wfy1227完成签到,获得积分10
11秒前
上好佳发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
duanduan完成签到,获得积分20
13秒前
13秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384