水流
动态时间归整
聚类分析
流域
相似性(几何)
计算机科学
随机森林
水文学(农业)
环境科学
机器学习
人工智能
地理
地图学
图像(数学)
工程类
岩土工程
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要
Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
科研通智能强力驱动
Strongly Powered by AbleSci AI