Streamflow prediction in ungauged catchments through use of catchment classification and deep learning

水流 动态时间归整 聚类分析 流域 相似性(几何) 计算机科学 随机森林 水文学(农业) 环境科学 机器学习 人工智能 地理 地图学 图像(数学) 工程类 岩土工程
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:639: 131638-131638 被引量:6
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要

Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牟有一甲店完成签到,获得积分10
1秒前
2秒前
瘦瘦的枫叶完成签到 ,获得积分10
3秒前
3秒前
英俊白莲发布了新的文献求助10
3秒前
星辰大海应助稳重的安萱采纳,获得10
5秒前
啾啾啾发布了新的文献求助10
5秒前
8秒前
10秒前
Xylah_Rebecca完成签到,获得积分10
10秒前
peanut完成签到,获得积分10
11秒前
椰汁糕发布了新的文献求助10
11秒前
ZQP完成签到,获得积分10
12秒前
13秒前
xu完成签到,获得积分10
13秒前
13秒前
冬虫夏草完成签到,获得积分10
14秒前
CodeCraft应助稳重的安萱采纳,获得10
14秒前
淡定落雁发布了新的文献求助10
15秒前
Xylah_Rebecca发布了新的文献求助10
15秒前
游元稔完成签到 ,获得积分10
16秒前
FoxLY完成签到,获得积分10
18秒前
火山蜗牛发布了新的文献求助10
18秒前
SDNUDRUG发布了新的文献求助10
19秒前
纸张猫猫完成签到,获得积分10
19秒前
碑刻发布了新的文献求助10
19秒前
游元稔关注了科研通微信公众号
20秒前
Anita完成签到,获得积分10
21秒前
CyrusSo524应助shuya采纳,获得10
21秒前
Z17应助shuya采纳,获得10
21秒前
yehR完成签到,获得积分20
22秒前
啾啾啾发布了新的文献求助10
23秒前
lyy66964193完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
smalldesk发布了新的文献求助30
25秒前
陈曦发布了新的文献求助10
27秒前
DijiaXu给必过六级的求助进行了留言
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176