已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Streamflow prediction in ungauged catchments through use of catchment classification and deep learning

水流 动态时间归整 聚类分析 流域 相似性(几何) 计算机科学 随机森林 水文学(农业) 环境科学 机器学习 人工智能 地理 地图学 图像(数学) 岩土工程 工程类
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:639: 131638-131638 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要

Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧怀薇完成签到,获得积分10
刚刚
wyhx完成签到,获得积分10
1秒前
4秒前
Liang完成签到,获得积分10
4秒前
明月朗晴完成签到 ,获得积分10
4秒前
lllllllllzx发布了新的文献求助10
5秒前
Yuang完成签到 ,获得积分10
9秒前
张Z发布了新的文献求助10
10秒前
10秒前
库茨库茨完成签到,获得积分10
12秒前
小花生完成签到,获得积分10
13秒前
alan完成签到 ,获得积分0
15秒前
Python_Liu完成签到 ,获得积分10
16秒前
慢慢来完成签到 ,获得积分10
21秒前
自信的冷安完成签到,获得积分10
26秒前
优美的冰巧完成签到 ,获得积分10
27秒前
29秒前
苗条的小蜜蜂完成签到 ,获得积分10
30秒前
过时的鸡翅应助Jason采纳,获得10
32秒前
冷艳铁身完成签到 ,获得积分10
33秒前
柚子完成签到 ,获得积分10
34秒前
lllllllllzx完成签到,获得积分10
39秒前
turtle完成签到 ,获得积分10
40秒前
42秒前
抹茶味的奶酥完成签到,获得积分10
43秒前
拿铁小笼包完成签到,获得积分10
43秒前
直率摩托完成签到,获得积分10
46秒前
123456完成签到,获得积分10
49秒前
SciGPT应助科研通管家采纳,获得10
51秒前
大个应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
syalonyui完成签到,获得积分10
52秒前
52秒前
纪富完成签到 ,获得积分10
55秒前
58秒前
59秒前
疯狂喵完成签到 ,获得积分10
1分钟前
bgerivers发布了新的文献求助10
1分钟前
可靠的一手完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443749
求助须知:如何正确求助?哪些是违规求助? 4553531
关于积分的说明 14242312
捐赠科研通 4475217
什么是DOI,文献DOI怎么找? 2452316
邀请新用户注册赠送积分活动 1443219
关于科研通互助平台的介绍 1418907