Streamflow prediction in ungauged catchments through use of catchment classification and deep learning

水流 动态时间归整 聚类分析 流域 相似性(几何) 计算机科学 随机森林 水文学(农业) 环境科学 机器学习 人工智能 地理 地图学 图像(数学) 岩土工程 工程类
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:639: 131638-131638 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要

Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官小怡发布了新的文献求助10
刚刚
2秒前
凸迩丝儿完成签到 ,获得积分10
3秒前
4秒前
在水一方应助叶小文采纳,获得10
4秒前
4秒前
黎云完成签到,获得积分10
4秒前
药药55发布了新的文献求助10
5秒前
老程完成签到,获得积分10
5秒前
炙热尔阳完成签到 ,获得积分10
7秒前
8秒前
8秒前
酸酸发布了新的文献求助10
8秒前
FashionBoy应助ZZ采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
GGGGD发布了新的文献求助10
11秒前
小盒子发布了新的文献求助10
11秒前
mxtsusan发布了新的文献求助10
12秒前
点点点完成签到,获得积分20
12秒前
12秒前
12秒前
李庭福发布了新的文献求助10
14秒前
善学以致用应助ssy采纳,获得10
14秒前
一年半太久只争朝夕完成签到,获得积分10
15秒前
科研通AI6应助不知名又又采纳,获得30
16秒前
神奇宝贝发布了新的文献求助10
16秒前
许红祥发布了新的文献求助10
17秒前
17秒前
19秒前
桐桐应助风趣雪一采纳,获得10
19秒前
自由蓉完成签到,获得积分20
20秒前
酸酸发布了新的文献求助20
21秒前
22秒前
23秒前
yusong发布了新的文献求助10
24秒前
隐形曼青应助LAST采纳,获得10
25秒前
叶小文发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421834
求助须知:如何正确求助?哪些是违规求助? 4536757
关于积分的说明 14154971
捐赠科研通 4453309
什么是DOI,文献DOI怎么找? 2442837
邀请新用户注册赠送积分活动 1434182
关于科研通互助平台的介绍 1411293