亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Streamflow prediction in ungauged catchments through use of catchment classification and deep learning

水流 动态时间归整 聚类分析 流域 相似性(几何) 计算机科学 随机森林 水文学(农业) 环境科学 机器学习 人工智能 地理 地图学 图像(数学) 工程类 岩土工程
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:639: 131638-131638 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要

Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宣若剑发布了新的文献求助10
6秒前
Murphy完成签到,获得积分10
20秒前
浮游应助科研通管家采纳,获得10
34秒前
mm应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
田様应助科研启动采纳,获得30
41秒前
51秒前
你嵙这个期刊没买完成签到,获得积分10
53秒前
li发布了新的文献求助20
58秒前
li完成签到,获得积分20
1分钟前
1分钟前
嘻嘻哈哈完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
apple发布了新的文献求助10
2分钟前
2分钟前
Conner完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
xxx发布了新的文献求助10
2分钟前
嵐酱布响堪论文完成签到,获得积分10
2分钟前
Jessica完成签到,获得积分10
2分钟前
3分钟前
4分钟前
aa111发布了新的文献求助10
4分钟前
完美世界应助aa111采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221