Streamflow prediction in ungauged catchments through use of catchment classification and deep learning

水流 动态时间归整 聚类分析 流域 相似性(几何) 计算机科学 随机森林 水文学(农业) 环境科学 机器学习 人工智能 地理 地图学 图像(数学) 工程类 岩土工程
作者
Miao He,S. S. Jiang,Liliang Ren,Hao Cui,Tianling Qin,Shuping Du,Yongwei Zhu,Xiuqin Fang,Chong‐Yu Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:639: 131638-131638 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.131638
摘要

Streamflow prediction in ungauged catchments is a challenging task in hydrological studies. Recently, data-driven models have demonstrated their superiority over traditional hydrological models in predicting streamflow in ungauged catchments. However, previous studies have overlooked the similarities between the training and the target catchments. Therefore, this study explores the role of catchment similarity in regionalization modeling using the publicly available CAMELS dataset. We employed the dynamic time warping-based KMeans (DTW-KMeans) time-series clustering technique to cluster the streamflow data from gauged catchments. We utilized the long short-term memory (LSTM) neural network to construct regional models for different classes of gauged catchment. Additionally, the mapping relationship between gauged catchment classes and static attributes was established using the random forest (RF). By combining the trained RF model with the static attributes of an ungauged catchment, we determined its class and used the corresponding regional LSTM to predict streamflow. To evaluate the effectiveness of the framework, we applied the classification-based regionalization modeling (CRM) and non-classification-based regionalization modeling (NRM) approach for comparison. The results indicate that: (1) The DTW-KMeans-based catchment classification method is generally accurate and reasonable; (2) the complexity of the LSTM model and the number of training catchments should be appropriately matched to improve streamflow prediction; and (3) catchment similarity plays a crucial role in regionalization modeling, the proportion of training catchments with high similarity to ungauged catchments significantly affects prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
航某人完成签到,获得积分10
刚刚
科研通AI6应助ZYX采纳,获得10
1秒前
研友_8KAOBn完成签到,获得积分10
1秒前
花椒鱼给花椒鱼的求助进行了留言
1秒前
1秒前
陆家麟发布了新的文献求助20
2秒前
3秒前
论英雄完成签到,获得积分10
3秒前
4秒前
7秒前
8秒前
kRAY发布了新的文献求助10
8秒前
8秒前
duktig完成签到 ,获得积分10
8秒前
港岛妹妹发布了新的文献求助10
9秒前
上官若男应助稳重向南采纳,获得10
10秒前
celine发布了新的文献求助10
10秒前
dawnstar发布了新的文献求助10
12秒前
12秒前
safsafdfasf发布了新的文献求助10
13秒前
dwx0529发布了新的文献求助30
13秒前
ding应助deityxq采纳,获得10
14秒前
浮游应助风趣黑裤采纳,获得10
14秒前
14秒前
14秒前
15秒前
16秒前
Hello应助徐梦曦采纳,获得10
16秒前
稳重向南完成签到,获得积分10
17秒前
32429606完成签到 ,获得积分10
18秒前
慕青应助活泼的行云采纳,获得10
19秒前
celine完成签到,获得积分20
19秒前
白羊发布了新的文献求助10
19秒前
19秒前
dwx0529完成签到,获得积分10
20秒前
22秒前
唐泽雪穗发布了新的文献求助30
22秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538689
求助须知:如何正确求助?哪些是违规求助? 3973052
关于积分的说明 12307737
捐赠科研通 3639863
什么是DOI,文献DOI怎么找? 2004161
邀请新用户注册赠送积分活动 1039575
科研通“疑难数据库(出版商)”最低求助积分说明 928856