A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging

磁共振成像 降噪 分辨率(逻辑) 人工智能 超分辨率 流量(数学) 扩散成像 扩散 计算机视觉 计算机科学 低分辨率 磁共振弥散成像 核磁共振 高分辨率 物理 图像(数学) 地质学 遥感 医学 放射科 机械 热力学
作者
Siyuan Dong,Zhuotong Cai,Gilbert Hangel,Wolfgang Bogner,Georg Widhalm,Yaqing Huang,Qinghao Liang,Chenyu You,Chathura Kumaragamage,Robert K. Fulbright,Amit Mahajan,Amin Karbasi,John A. Onofrey,Robin A. de Graaf,James S. Duncan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103358-103358
标识
DOI:10.1016/j.media.2024.103358
摘要

Magnetic Resonance Spectroscopic Imaging (MRSI) is a non-invasive imaging technique for studying metabolism and has become a crucial tool for understanding neurological diseases, cancers and diabetes. High spatial resolution MRSI is needed to characterize lesions, but in practice MRSI is acquired at low resolution due to time and sensitivity restrictions caused by the low metabolite concentrations. Therefore, there is an imperative need for a post-processing approach to generate high-resolution MRSI from low-resolution data that can be acquired fast and with high sensitivity. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but they still have limited capability to generate accurate and high-quality images. Recently, diffusion models have demonstrated superior learning capability than other generative models in various tasks, but sampling from diffusion models requires iterating through a large number of diffusion steps, which is time-consuming. This work introduces a Flow-based Truncated Denoising Diffusion Model (FTDDM) for super-resolution MRSI, which shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network. The network is conditioned on upscaling factors to enable multi-scale super-resolution. To train and evaluate the deep learning models, we developed a
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴发布了新的文献求助30
刚刚
1秒前
1秒前
1秒前
2秒前
yookia应助JIANYOUFU采纳,获得10
2秒前
GAOYI完成签到,获得积分10
2秒前
2秒前
饼的书发布了新的文献求助10
3秒前
热舞特完成签到,获得积分10
3秒前
香蕉觅云应助复杂若男采纳,获得10
3秒前
田様应助两只老虎和兔子采纳,获得10
3秒前
隐形曼青应助PaoPao采纳,获得10
3秒前
rekill完成签到,获得积分10
4秒前
4秒前
爆米花应助坚强的严青采纳,获得10
4秒前
5秒前
5秒前
123应助cc采纳,获得10
6秒前
GAOYI发布了新的文献求助10
6秒前
那一天发布了新的文献求助10
7秒前
天天快乐应助jun采纳,获得10
7秒前
8秒前
idXin_Qing完成签到,获得积分10
9秒前
失眠成危完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
SamuelLiu完成签到,获得积分10
12秒前
8R60d8应助Lee采纳,获得10
12秒前
13秒前
慕青应助Tingting采纳,获得10
13秒前
13秒前
14秒前
14秒前
AstrLees完成签到 ,获得积分10
14秒前
gy发布了新的文献求助10
16秒前
天天快乐应助张爱学采纳,获得10
16秒前
彭于彦祖应助好困采纳,获得30
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352