清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging

磁共振成像 降噪 分辨率(逻辑) 人工智能 超分辨率 流量(数学) 扩散成像 扩散 计算机视觉 计算机科学 低分辨率 磁共振弥散成像 核磁共振 高分辨率 物理 图像(数学) 地质学 遥感 医学 放射科 机械 热力学
作者
Siyuan Dong,Zhuotong Cai,Gilbert Hangel,Wolfgang Bogner,Georg Widhalm,Yaqing Huang,Qinghao Liang,Chenyu You,Chathura Kumaragamage,Robert K. Fulbright,Amit Mahajan,Amin Karbasi,John A. Onofrey,Robin A. de Graaf,James S. Duncan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103358-103358
标识
DOI:10.1016/j.media.2024.103358
摘要

Magnetic Resonance Spectroscopic Imaging (MRSI) is a non-invasive imaging technique for studying metabolism and has become a crucial tool for understanding neurological diseases, cancers and diabetes. High spatial resolution MRSI is needed to characterize lesions, but in practice MRSI is acquired at low resolution due to time and sensitivity restrictions caused by the low metabolite concentrations. Therefore, there is an imperative need for a post-processing approach to generate high-resolution MRSI from low-resolution data that can be acquired fast and with high sensitivity. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but they still have limited capability to generate accurate and high-quality images. Recently, diffusion models have demonstrated superior learning capability than other generative models in various tasks, but sampling from diffusion models requires iterating through a large number of diffusion steps, which is time-consuming. This work introduces a Flow-based Truncated Denoising Diffusion Model (FTDDM) for super-resolution MRSI, which shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network. The network is conditioned on upscaling factors to enable multi-scale super-resolution. To train and evaluate the deep learning models, we developed a
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
8秒前
zzz发布了新的文献求助10
14秒前
huiluowork完成签到 ,获得积分10
30秒前
jh完成签到 ,获得积分10
38秒前
归尘应助科研通管家采纳,获得10
41秒前
Eric800824完成签到 ,获得积分10
43秒前
zzz完成签到,获得积分20
59秒前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
虚幻小丸子完成签到 ,获得积分10
1分钟前
2分钟前
rover完成签到,获得积分10
2分钟前
JHY发布了新的文献求助10
2分钟前
吴学仕完成签到,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得30
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
郑琦敏钰完成签到 ,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
Physio完成签到,获得积分10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
财路通八方完成签到 ,获得积分10
5分钟前
poki完成签到 ,获得积分10
5分钟前
Will完成签到,获得积分10
5分钟前
和气生财君完成签到 ,获得积分10
5分钟前
幽默的妍完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889804
求助须知:如何正确求助?哪些是违规求助? 4173714
关于积分的说明 12952336
捐赠科研通 3935201
什么是DOI,文献DOI怎么找? 2159296
邀请新用户注册赠送积分活动 1177620
关于科研通互助平台的介绍 1082646