Parallel Multi-Path Network for Ocular Disease Detection Inspired by Visual Cognition Mechanism

计算机科学 认知 机制(生物学) 路径(计算) 人工智能 疾病 计算机视觉 神经科学 医学 计算机网络 心理学 病理 哲学 认识论
作者
Tao Deng,Yi Huang,C F Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3471807
摘要

Various ocular diseases such as cataracts, glaucoma, and diabetic retinopathy have become several major factors causing non-congenital visual impairment, which seriously threatens people's vision health. The shortage of ophthalmic medical resources has brought huge obstacles to large-scale ocular disease screening. Therefore, it is necessary to use computer-aided diagnosis (CAD) technology to achieve large-scale screening and diagnosis of ocular diseases. In this work, inspired by the human visual cognition mechanism, we propose a parallel multi-path network for multiple ocular diseases detection, called PMP-OD, which integrates the detection of multiple common ocular diseases, including cataracts, glaucoma, diabetic retinopathy, and pathological myopia. The bottom-up features of the fundus image are extracted by a common convolutional module, the Low-level Feature Extraction module, which simulates the non-selective pathway. Simultaneously, the top-down vessel and other lesion features are extracted by the High-level Feature Extraction module that simulates the selective pathway. The retinal vessel and lesion features can be regarded as task-driven high-level semantic information in the physician's disease diagnosis process. Then, the features are fused by a feature fusion module based on the attention mechanism. Finally, the disease classifier gives prediction results according to the integrated multi-features. The experimental results indicate that our PMP-OD model outperforms other state-of-the-art (SOTA) models on an ocular disease dataset reconstructed from ODIR-5K, APTOS-2019, ORIGA-light, and Kaggle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮发布了新的文献求助30
1秒前
1秒前
辛勤金连发布了新的文献求助30
1秒前
1214发布了新的文献求助10
1秒前
2秒前
在水一方应助LHP采纳,获得10
2秒前
小lu完成签到,获得积分20
3秒前
橙啊晨完成签到,获得积分20
3秒前
自然白安发布了新的文献求助10
3秒前
3秒前
4秒前
沙拉完成签到,获得积分10
4秒前
SIDEsss应助小白采纳,获得10
5秒前
Lucas应助文哲采纳,获得10
5秒前
哭泣蛋挞发布了新的文献求助10
6秒前
6秒前
ker发布了新的文献求助10
6秒前
7秒前
无花果应助六月残雪采纳,获得10
7秒前
8秒前
cctv18应助lojack采纳,获得10
8秒前
小二郎应助直率的心情采纳,获得200
8秒前
han完成签到 ,获得积分10
8秒前
9秒前
yu完成签到,获得积分10
9秒前
Pearl发布了新的文献求助10
9秒前
10秒前
10秒前
wanci应助huijuan采纳,获得30
11秒前
11秒前
艺艺完成签到,获得积分10
12秒前
916完成签到 ,获得积分10
12秒前
Lucas应助蛙桑采纳,获得10
12秒前
神奇完成签到,获得积分10
12秒前
超级兵12发布了新的文献求助10
13秒前
zakarya发布了新的文献求助10
13秒前
科研通AI5应助QXR采纳,获得30
14秒前
15秒前
神奇发布了新的文献求助20
16秒前
神经质发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757132
求助须知:如何正确求助?哪些是违规求助? 3300413
关于积分的说明 10113706
捐赠科研通 3014890
什么是DOI,文献DOI怎么找? 1655758
邀请新用户注册赠送积分活动 790084
科研通“疑难数据库(出版商)”最低求助积分说明 753565