Machine learning in female urinary incontinence: A scoping review

尿失禁 逻辑回归 接收机工作特性 机器学习 医学 人工智能 梅德林 标准化 妇科 计算机科学 泌尿科 政治学 操作系统 法学
作者
Qi Wang,Xiaoxiao Wang,Xiaoxiang Jiang,Chaoqin Lin
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241281450
摘要

Introduction and Hypothesis The aim was to conduct a scoping review of the literature on the use of machine learning (ML) in female urinary incontinence (UI) over the last decade. Methods A systematic search was performed among the Medline, Google Scholar, PubMed, and Web of Science databases using the following keywords: [Urinary incontinence] and [(Machine learning) or (Predict) or (Prediction model)]. Eligible studies were considered to have applied ML model to explore different management processes of female UI. Data analyzed included the field of application, type of ML, input variables, and results of model validation. Results A total of 798 papers were identified while 23 finally met the inclusion criteria. The vast majority of studies applied logistic regression to establish models (91.3%, 21/23). Most frequently ML was applied to predict postpartum UI (39.1%, 9/23), followed by de novo incontinence after pelvic floor surgery (34.8%, 8/23).There are also three papers using ML models to predict treatment outcomes and three papers using ML models to assist in diagnosis. Variables for modeling included demographic characteristics, clinical data, pelvic floor ultrasound, and urodynamic parameters. The area under receiver operating characteristic curve of these models fluctuated from 0.56 to 0.95, and only 11 studies reported sensitivity and specificity, with sensitivity ranging from 20% to 96.2% and specificity from 59.8% to 94.5%. Conclusion Machine learning modeling demonstrated good predictive and diagnostic abilities in some aspects of female UI, showing its promising prospects in near future. However, the lack of standardization and transparency in the validation and evaluation of the models, and the insufficient external validation greatly diminished the applicability and reproducibility, thus a focus on filling this gap is strongly recommended for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
2秒前
3秒前
4秒前
Forty发布了新的文献求助10
4秒前
jyy完成签到 ,获得积分10
5秒前
MT发布了新的文献求助10
6秒前
酷波er应助去海边吗采纳,获得10
6秒前
6秒前
6秒前
6秒前
王显鹏发布了新的文献求助10
6秒前
7秒前
orixero应助游艺采纳,获得10
8秒前
8秒前
科研通AI2S应助mia采纳,获得10
9秒前
Sin7完成签到,获得积分10
9秒前
步念完成签到,获得积分20
11秒前
11秒前
11秒前
dumo应助DDGD采纳,获得60
12秒前
13秒前
hopy发布了新的文献求助10
13秒前
情怀应助笑忘书采纳,获得10
14秒前
14秒前
黄金甲完成签到,获得积分10
15秒前
15秒前
步念发布了新的文献求助30
16秒前
独月映晨星完成签到,获得积分10
16秒前
samara发布了新的文献求助10
16秒前
17秒前
高大清涟完成签到,获得积分20
17秒前
17秒前
奇趣糖完成签到,获得积分10
17秒前
酷波er应助吴1采纳,获得10
18秒前
18秒前
不如一默发布了新的文献求助10
18秒前
19秒前
Sin7发布了新的文献求助10
20秒前
20秒前
星辰大海应助强强强强采纳,获得30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737