The Use of Fluorescence Spectrometry Combined with Statistical Tools to Determine the Botanical Origin of Honeys

养蜂场 荧光 线性判别分析 鉴定(生物学) 统计分析 色谱法 生物系统 化学 模式识别(心理学) 计算机科学 分析化学(期刊) 人工智能 数学 植物 生物 统计 养蜂女孩 物理 光学
作者
Aleksandra Wilczyńska,Natalia Żak
出处
期刊:Foods [MDPI AG]
卷期号:13 (20): 3303-3303
标识
DOI:10.3390/foods13203303
摘要

At a time when the botanical origin of honey is being increasingly falsified, there is a need to find a quick, cheap and simple method of identifying its origin. Therefore, the aim of our work was to show that fluorescence spectrometry, together with statistical analysis, can be such a method. In total, 108 representative samples with 10 different botanic origins (9 unifloral and 1 multifloral), obtained in 2020–2022 from local apiaries, were analyzed. The fluorescence spectra of those samples were determined using a F-7000 Hitachi fluorescence spectrophotometer, Tokyo, Japan. It is shown that each honey variety produces a unique emission spectrum, which allows for the determination of its botanical origin. Taking into account the difficulties in analyzing these spectra, it was found that the most information regarding botanical differences and their identification is provided by synchronous cross-sections of these spectra obtained at Δλ = 100 nm. In addition, this analysis was supported by discriminant and canonical analysis, which allowed for the creation of mathematical models, allowing for the correct classification of each type of honey (except dandelion) with an accuracy of over 80%. The application of the method is universal (in accordance with the methodology described in this paper), but its use requires the creation of fluorescence spectral matrices (EEG) characteristic of a given geographical and botanical origin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大侠发布了新的文献求助10
刚刚
魁梧的乐天完成签到,获得积分20
刚刚
冯度翩翩完成签到,获得积分10
1秒前
科研通AI2S应助satchzhao采纳,获得10
1秒前
jijizz完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
小马甲应助ChiDaiOLD采纳,获得10
2秒前
2秒前
鳗鱼灵寒发布了新的文献求助10
3秒前
shatang发布了新的文献求助10
3秒前
lesyeuxdexx完成签到 ,获得积分10
5秒前
6秒前
程琳完成签到,获得积分20
7秒前
8秒前
卓哥发布了新的文献求助10
8秒前
科研通AI5应助sansan采纳,获得10
9秒前
9秒前
9秒前
脑洞疼应助杰森斯坦虎采纳,获得10
9秒前
11秒前
12秒前
研友_QQC完成签到,获得积分10
12秒前
NeuroWhite完成签到,获得积分10
12秒前
12秒前
搜索v完成签到,获得积分10
13秒前
liuchuck完成签到 ,获得积分10
13秒前
13秒前
13秒前
猫独秀完成签到,获得积分10
13秒前
15秒前
buno应助yuefeng采纳,获得10
15秒前
yiming完成签到,获得积分10
15秒前
落落发布了新的文献求助10
16秒前
清秋若月完成签到 ,获得积分10
16秒前
16秒前
呵呵呵呵完成签到,获得积分10
17秒前
17秒前
远方发布了新的文献求助10
18秒前
zxc111关注了科研通微信公众号
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808