已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intraoperative detection of parathyroid glands using artificial intelligence: optimizing medical image training with data augmentation methods

甲状旁腺机能减退 医学 甲状腺切除术 甲状旁腺 外科 甲状旁腺激素 甲状腺 内科学
作者
Joon‐Hyop Lee,EunKyung Ku,Yoo Seung Chung,Young Jae Kim,Kwang Gi Kim
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:38 (10): 5732-5745 被引量:2
标识
DOI:10.1007/s00464-024-11115-z
摘要

Postoperative hypoparathyroidism is a major complication of thyroidectomy, occurring when the parathyroid glands are inadvertently damaged during surgery. Although intraoperative images are rarely used to train artificial intelligence (AI) because of its complex nature, AI may be trained to intraoperatively detect parathyroid glands using various augmentation methods. The purpose of this study was to train an effective AI model to detect parathyroid glands during thyroidectomy. Video clips of the parathyroid gland were collected during thyroid lobectomy procedures. Confirmed parathyroid images were used to train three types of datasets according to augmentation status: baseline, geometric transformation, and generative adversarial network-based image inpainting. The primary outcome was the average precision of the performance of AI in detecting parathyroid glands. 152 Fine-needle aspiration-confirmed parathyroid gland images were acquired from 150 patients who underwent unilateral lobectomy. The average precision of the AI model in detecting parathyroid glands based on baseline data was 77%. This performance was enhanced by applying both geometric transformation and image inpainting augmentation methods, with the geometric transformation data augmentation dataset showing a higher average precision (79%) than the image inpainting model (78.6%). When this model was subjected to external validation using a completely different thyroidectomy approach, the image inpainting method was more effective (46%) than both the geometric transformation (37%) and baseline (33%) methods. This AI model was found to be an effective and generalizable tool in the intraoperative identification of parathyroid glands during thyroidectomy, especially when aided by appropriate augmentation methods. Additional studies comparing model performance and surgeon identification, however, are needed to assess the true clinical relevance of this AI model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tianliyan完成签到 ,获得积分10
1秒前
小刘哥儿完成签到,获得积分10
1秒前
2秒前
Akim应助任性铅笔采纳,获得10
3秒前
zhj发布了新的文献求助30
5秒前
稳重的御姐完成签到,获得积分10
5秒前
俭朴的玉兰完成签到 ,获得积分10
7秒前
谢谢你好心人完成签到,获得积分10
7秒前
华仔应助zhan采纳,获得10
9秒前
zhj完成签到,获得积分20
9秒前
自然的雅香完成签到 ,获得积分10
11秒前
XinEr完成签到 ,获得积分10
12秒前
两个我完成签到 ,获得积分10
12秒前
北觅完成签到 ,获得积分10
14秒前
shiz花生完成签到,获得积分10
14秒前
16秒前
红薯干完成签到,获得积分10
17秒前
坚强觅珍完成签到 ,获得积分10
17秒前
大个应助李湘琼采纳,获得10
18秒前
mm发布了新的文献求助10
20秒前
英勇听兰完成签到 ,获得积分10
20秒前
大神完成签到,获得积分10
21秒前
23秒前
23秒前
CipherSage应助科研通管家采纳,获得30
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
暴躁的元灵完成签到 ,获得积分10
26秒前
Ethan完成签到 ,获得积分0
28秒前
zhan发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
normankasimodo完成签到 ,获得积分10
32秒前
www268完成签到 ,获得积分10
33秒前
等待的剑身完成签到,获得积分10
33秒前
舒适以松完成签到,获得积分10
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570992
求助须知:如何正确求助?哪些是违规求助? 3141741
关于积分的说明 9444104
捐赠科研通 2843059
什么是DOI,文献DOI怎么找? 1562633
邀请新用户注册赠送积分活动 731183
科研通“疑难数据库(出版商)”最低求助积分说明 718401