Intraoperative detection of parathyroid glands using artificial intelligence: optimizing medical image training with data augmentation methods

甲状旁腺机能减退 医学 甲状腺切除术 甲状旁腺 外科 甲状旁腺激素 甲状腺 内科学
作者
Joon‐Hyop Lee,EunKyung Ku,Yoo Seung Chung,Young Jae Kim,Kwang Gi Kim
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:38 (10): 5732-5745 被引量:2
标识
DOI:10.1007/s00464-024-11115-z
摘要

Postoperative hypoparathyroidism is a major complication of thyroidectomy, occurring when the parathyroid glands are inadvertently damaged during surgery. Although intraoperative images are rarely used to train artificial intelligence (AI) because of its complex nature, AI may be trained to intraoperatively detect parathyroid glands using various augmentation methods. The purpose of this study was to train an effective AI model to detect parathyroid glands during thyroidectomy. Video clips of the parathyroid gland were collected during thyroid lobectomy procedures. Confirmed parathyroid images were used to train three types of datasets according to augmentation status: baseline, geometric transformation, and generative adversarial network-based image inpainting. The primary outcome was the average precision of the performance of AI in detecting parathyroid glands. 152 Fine-needle aspiration-confirmed parathyroid gland images were acquired from 150 patients who underwent unilateral lobectomy. The average precision of the AI model in detecting parathyroid glands based on baseline data was 77%. This performance was enhanced by applying both geometric transformation and image inpainting augmentation methods, with the geometric transformation data augmentation dataset showing a higher average precision (79%) than the image inpainting model (78.6%). When this model was subjected to external validation using a completely different thyroidectomy approach, the image inpainting method was more effective (46%) than both the geometric transformation (37%) and baseline (33%) methods. This AI model was found to be an effective and generalizable tool in the intraoperative identification of parathyroid glands during thyroidectomy, especially when aided by appropriate augmentation methods. Additional studies comparing model performance and surgeon identification, however, are needed to assess the true clinical relevance of this AI model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蛇玩发布了新的文献求助10
1秒前
彼方尚有荣光在完成签到 ,获得积分10
2秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
chuchu应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得30
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
迟大猫应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
sekidesu发布了新的文献求助10
5秒前
12秒前
13秒前
水沝完成签到 ,获得积分10
13秒前
小林太郎应助lin采纳,获得20
15秒前
16秒前
16秒前
郑泽森发布了新的文献求助100
18秒前
李小刚发布了新的文献求助10
18秒前
卢本伟牛逼完成签到,获得积分10
20秒前
zly97018完成签到 ,获得积分10
20秒前
jinzhou发布了新的文献求助10
20秒前
20秒前
HYH发布了新的文献求助10
21秒前
22秒前
23秒前
25秒前
keke发布了新的文献求助10
25秒前
清脆的从寒完成签到,获得积分10
27秒前
zx发布了新的文献求助30
27秒前
library2025完成签到,获得积分10
28秒前
郑泽森完成签到,获得积分10
28秒前
花火发布了新的文献求助10
29秒前
孤独的丸子头完成签到,获得积分10
31秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570915
求助须知:如何正确求助?哪些是违规求助? 3141477
关于积分的说明 9443546
捐赠科研通 2842899
什么是DOI,文献DOI怎么找? 1562589
邀请新用户注册赠送积分活动 731096
科研通“疑难数据库(出版商)”最低求助积分说明 718375