清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intraoperative detection of parathyroid glands using artificial intelligence: optimizing medical image training with data augmentation methods

甲状旁腺机能减退 医学 甲状腺切除术 甲状旁腺 外科 甲状旁腺激素 甲状腺 内科学
作者
Joon‐Hyop Lee,EunKyung Ku,Yoo Seung Chung,Young Jae Kim,Kwang Gi Kim
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:38 (10): 5732-5745 被引量:2
标识
DOI:10.1007/s00464-024-11115-z
摘要

Postoperative hypoparathyroidism is a major complication of thyroidectomy, occurring when the parathyroid glands are inadvertently damaged during surgery. Although intraoperative images are rarely used to train artificial intelligence (AI) because of its complex nature, AI may be trained to intraoperatively detect parathyroid glands using various augmentation methods. The purpose of this study was to train an effective AI model to detect parathyroid glands during thyroidectomy. Video clips of the parathyroid gland were collected during thyroid lobectomy procedures. Confirmed parathyroid images were used to train three types of datasets according to augmentation status: baseline, geometric transformation, and generative adversarial network-based image inpainting. The primary outcome was the average precision of the performance of AI in detecting parathyroid glands. 152 Fine-needle aspiration-confirmed parathyroid gland images were acquired from 150 patients who underwent unilateral lobectomy. The average precision of the AI model in detecting parathyroid glands based on baseline data was 77%. This performance was enhanced by applying both geometric transformation and image inpainting augmentation methods, with the geometric transformation data augmentation dataset showing a higher average precision (79%) than the image inpainting model (78.6%). When this model was subjected to external validation using a completely different thyroidectomy approach, the image inpainting method was more effective (46%) than both the geometric transformation (37%) and baseline (33%) methods. This AI model was found to be an effective and generalizable tool in the intraoperative identification of parathyroid glands during thyroidectomy, especially when aided by appropriate augmentation methods. Additional studies comparing model performance and surgeon identification, however, are needed to assess the true clinical relevance of this AI model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到 ,获得积分10
9秒前
Y不吃香菜发布了新的文献求助10
45秒前
Y不吃香菜完成签到,获得积分10
54秒前
zh完成签到 ,获得积分10
1分钟前
doreen完成签到 ,获得积分10
1分钟前
小雨o0完成签到,获得积分20
2分钟前
科研通AI5应助飞翔的企鹅采纳,获得10
2分钟前
tszjw168完成签到 ,获得积分10
2分钟前
火星上惜天完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
姚芭蕉完成签到 ,获得积分0
3分钟前
4分钟前
小亮发布了新的文献求助10
4分钟前
poser完成签到,获得积分10
4分钟前
yellowonion完成签到 ,获得积分10
4分钟前
科研通AI5应助小亮采纳,获得10
4分钟前
英姑应助子不语采纳,获得10
4分钟前
4分钟前
Tong完成签到,获得积分0
4分钟前
子不语发布了新的文献求助10
4分钟前
lovexa完成签到,获得积分10
5分钟前
科研Mayormm完成签到 ,获得积分10
5分钟前
子不语完成签到,获得积分10
5分钟前
creep2020完成签到,获得积分10
5分钟前
积极的中蓝完成签到 ,获得积分10
6分钟前
Joseph_Kerr完成签到 ,获得积分20
6分钟前
gwbk完成签到,获得积分10
6分钟前
Fiona完成签到 ,获得积分10
7分钟前
Lucas应助科研通管家采纳,获得30
7分钟前
zhangguo完成签到 ,获得积分10
7分钟前
lixuebin完成签到 ,获得积分10
8分钟前
8分钟前
脑洞疼应助诚心的月光采纳,获得10
8分钟前
中中中发布了新的文献求助10
8分钟前
8分钟前
8分钟前
中中中完成签到,获得积分10
8分钟前
dormraider完成签到,获得积分10
9分钟前
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571303
求助须知:如何正确求助?哪些是违规求助? 3141895
关于积分的说明 9444838
捐赠科研通 2843331
什么是DOI,文献DOI怎么找? 1562830
邀请新用户注册赠送积分活动 731326
科研通“疑难数据库(出版商)”最低求助积分说明 718513