作者
Yuxiao Gou,Lin Fu,Dan Li,D.Y. Zhang
摘要
Toluene diisocyanate (TDI) is a major industrial compound that induces occupational asthma with steroid-resistant properties. Recent studies suggest that the gastrointestinal tract may be an effective target for the treatment of respiratory diseases. However, the alterations of the gut-lung axis in TDI-induced asthma remain unexplored. Therefore, in this study, a model of stable occupational asthma caused by TDI exposure was established to detect the alteration of the gut-lung axis. Exposure to TDI resulted in dysbiosis of the gut microbiome, with significant decreases in Barnesiella_intestinihominis, Faecalicoccus_pleomorphus, Lactobacillus_apodemi, and Lactobacillus_intestinalis, but increases in Alistipes_shahii and Odoribacter_laneus. The largest change in abundance was in Barnesiella_intestinihominis, which decreased from 12.14 per cent to 6.18 per cent. The histopathological abnormalities, including shorter length of intestinal villi, thinner thickness of muscularis, reduced number of goblet cells and inflammatory cell infiltration, were found in TDI-treated mice compared to control mice. In addition, increased permeability (evidenced by significantly reduced levels of ZO-1, Occludin and Claudin-1) and activation of TLR4/NF-κB signaling were observed in the intestine of these TDI-exposed mice. Concurrently, exposure to TDI resulted in airway hyperresponsiveness, overt cytokine production (e.g., IL-4, IL-5, IL-13, IL-25, and IL-33), and elevated IgE level within the respiratory tract. The expression of tight junction proteins is reduced and TLR4/NF-κB signaling is activated in the lung following TDI treatment. In addition, correlation analyses showed that changes in the gut microbiota were correlated with TDI exposure-induced airway inflammation. In conclusion, the present study suggests that the immune gut-lung axis may be involved in the development of TDI-induced asthma, which may have implications for potential interventions against steroid-resistant asthma.