亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent road surface state recognition method based on multi-layer attention residual network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 基因 生物化学 放射科 土木工程 计算机安全 化学
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021 被引量:3
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
斯文败类应助精明的靖雁采纳,获得10
15秒前
CodeCraft应助Li采纳,获得10
20秒前
34秒前
StonesKing发布了新的文献求助10
39秒前
56秒前
kale123发布了新的文献求助10
1分钟前
Li发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
可爱的函函应助Li采纳,获得10
2分钟前
2分钟前
catherine发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
3分钟前
Li发布了新的文献求助10
3分钟前
yt完成签到 ,获得积分10
3分钟前
3分钟前
tyr001发布了新的文献求助30
3分钟前
Yanyu完成签到,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Ava应助tyr001采纳,获得10
3分钟前
Yanyu发布了新的文献求助100
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
赘婿应助Bosen采纳,获得10
4分钟前
4分钟前
Bosen发布了新的文献求助10
4分钟前
山水主人完成签到 ,获得积分10
5分钟前
tengfei完成签到,获得积分10
5分钟前
奥丁蒂法完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
knight7m完成签到 ,获得积分10
6分钟前
6分钟前
冰魄之弓发布了新的文献求助10
6分钟前
冰魄之弓完成签到,获得积分20
6分钟前
Owen应助Bosen采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634915
捐赠科研通 4576098
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572