Intelligent Road Surface State Recognition Method based on Multi-Layer Attention Residual Network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 基因 生物化学 放射科 土木工程 计算机安全 化学
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听千秋完成签到 ,获得积分10
1秒前
欣慰薯片发布了新的文献求助10
1秒前
hzwdm1发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
JavedAli完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
吸墨发布了新的文献求助50
6秒前
7秒前
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
water完成签到,获得积分10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
吸墨发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261