Intelligent Road Surface State Recognition Method based on Multi-Layer Attention Residual Network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 生物化学 化学 土木工程 计算机安全 放射科 基因
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助大亚基采纳,获得10
刚刚
濮阳映萱发布了新的文献求助10
刚刚
刚刚
orixero应助77采纳,获得10
1秒前
Ginkgo发布了新的文献求助10
1秒前
慕青应助奔跑的棉花采纳,获得10
1秒前
1秒前
海风完成签到,获得积分10
2秒前
隐形曼青应助xixilulixiu采纳,获得10
2秒前
3秒前
yaoqiangshi发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
欣喜念桃完成签到 ,获得积分20
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
吴灵完成签到,获得积分10
6秒前
6秒前
传奇3应助Chengcheng采纳,获得10
6秒前
6秒前
小二郎应助4444采纳,获得10
7秒前
xctdyl1992发布了新的文献求助10
7秒前
7秒前
丘比特应助四夕采纳,获得10
7秒前
林碧完成签到,获得积分10
8秒前
SEM小菜鸡发布了新的文献求助30
8秒前
赘婿应助shizi采纳,获得10
8秒前
8秒前
MM发布了新的文献求助10
9秒前
9秒前
9秒前
顾矜应助濮阳映萱采纳,获得10
10秒前
10秒前
林碧发布了新的文献求助10
10秒前
还行完成签到 ,获得积分10
10秒前
Orange应助kun采纳,获得10
11秒前
香蕉觅云应助称心妙柏采纳,获得30
11秒前
甜美无剑应助星希采纳,获得10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059