已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Road Surface State Recognition Method based on Multi-Layer Attention Residual Network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 生物化学 化学 土木工程 计算机安全 放射科 基因
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hins发布了新的文献求助10
2秒前
niniz完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Lucas应助77采纳,获得10
6秒前
sin完成签到,获得积分10
7秒前
谨慎含双发布了新的文献求助10
7秒前
海清发布了新的文献求助10
9秒前
10秒前
889发布了新的文献求助20
11秒前
哈哈完成签到,获得积分10
12秒前
隐形曼青应助李...采纳,获得10
13秒前
15秒前
16秒前
hob发布了新的文献求助10
20秒前
20秒前
22秒前
热情的乐菱完成签到,获得积分10
23秒前
李...发布了新的文献求助10
24秒前
25秒前
三点水完成签到 ,获得积分10
26秒前
29秒前
冷静尔芙发布了新的文献求助10
29秒前
JamesPei应助hob采纳,获得10
29秒前
30秒前
30秒前
pangmengxuan发布了新的文献求助10
33秒前
34秒前
犹豫笑容发布了新的文献求助10
35秒前
哈哈发布了新的文献求助10
37秒前
somebodyzou发布了新的文献求助30
37秒前
身处人海完成签到,获得积分10
40秒前
40秒前
luoluo完成签到 ,获得积分10
41秒前
等成发布了新的文献求助10
41秒前
三三发布了新的文献求助10
46秒前
冷静尔芙完成签到,获得积分10
46秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753514
求助须知:如何正确求助?哪些是违规求助? 3297104
关于积分的说明 10097370
捐赠科研通 3011787
什么是DOI,文献DOI怎么找? 1654244
邀请新用户注册赠送积分活动 788717
科研通“疑难数据库(出版商)”最低求助积分说明 752966