Intelligent Road Surface State Recognition Method based on Multi-Layer Attention Residual Network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 生物化学 化学 土木工程 计算机安全 放射科 基因
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助cheryjay采纳,获得10
1秒前
sooyaaa发布了新的文献求助10
1秒前
木子水告完成签到,获得积分10
2秒前
2秒前
崔崔发布了新的文献求助10
3秒前
李健应助停停停采纳,获得10
5秒前
yhw完成签到,获得积分10
6秒前
大胆的芸遥完成签到,获得积分10
6秒前
小马甲应助jihe采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
小羊完成签到,获得积分10
8秒前
8秒前
8秒前
郝宇发布了新的文献求助10
8秒前
科目三应助yibo采纳,获得30
9秒前
复杂的蛋挞完成签到 ,获得积分10
9秒前
10秒前
11秒前
啊哈哈哈哈哈完成签到 ,获得积分10
11秒前
11秒前
JamesPei应助花花采纳,获得10
11秒前
充电宝应助光亮的绮晴采纳,获得10
12秒前
sooyaaa完成签到,获得积分10
13秒前
杨仲文发布了新的文献求助10
13秒前
Silone发布了新的文献求助10
13秒前
深情安青应助老实的玉米采纳,获得10
13秒前
凡凡的凡凡应助Kate采纳,获得10
13秒前
14秒前
14秒前
14秒前
hdy331完成签到,获得积分0
15秒前
丘比特应助xiuxiu采纳,获得10
15秒前
思源应助开朗问晴采纳,获得10
16秒前
浮游应助何以载道采纳,获得10
16秒前
安谢发布了新的文献求助10
16秒前
浮生梦应助秀丽的正豪采纳,获得10
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590