Intelligent Road Surface State Recognition Method based on Multi-Layer Attention Residual Network

卷积神经网络 计算机科学 残余物 人工智能 稳健性(进化) 深度学习 加权 模式识别(心理学) 路面 人工神经网络 特征提取 智能交通系统 网络体系结构 数据挖掘 算法 工程类 医学 生物化学 化学 土木工程 计算机安全 放射科 基因
作者
Wu Qin,Xiangping Liao,Pengfei Han,Jiachen Pan,Feifei Liu,Xianfu Cheng,Hui Liu,Zhuyun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016021-016021
标识
DOI:10.1088/1361-6501/ad86e0
摘要

Abstract Data-driven road surface state recognition enhances the efficiency and accuracy of road management, contributing to increased safety and reliability in road traffic. However, traditional machine learning and deep learning-based road surface state recognition typically rely on extensive data for model training, making it challenging to adapt to complex tasks in diverse scenarios. Therefore, this paper proposes a Multi-layer Attention Residual Network (MARN)-based intelligent road surface state recognition method. First, a Residual Convolutional Neural Network (ResNet) is constructed as the backbone model of MARN to mitigate the gradient vanishing problem, allowing the network to extract deeper features. Subsequently, an adaptive multi-layer attention mechanism is introduced in each convolutional layer, enabling adaptive weighting of each feature channel in the dataset to enhance the model’s focus on different features for better feature extraction. Furthermore, a cosine annealing learning rate adjuster is designed to improve the accuracy, robustness, and convergence during the model training process. Finally, the proposed MARN is validated using an image dataset containing six different road surface states. Comparative studies are conducted on the recognition accuracy of the proposed MARN, original ResNet, Visual Geometry Group network (VGG16), and Convolutional Neural Network (CNN). The impact of different batch sizes on the convergence speed of road surface state recognition under MARN is also analyzed. Results demonstrate that MARN achieves a training set accuracy of over 95%, surpassing VGG16 and CNN with accuracies below 85%. Compared to ResNet, MARN exhibits a 1.3% higher training set accuracy and a 0.25 lower validation set loss, showcasing superior accuracy and robustness in road surface state recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttthz发布了新的文献求助10
1秒前
he发布了新的文献求助10
1秒前
1秒前
脑洞疼应助linxc07采纳,获得10
3秒前
4秒前
6秒前
洁净艳一完成签到,获得积分10
7秒前
酷波er应助勤劳的雨琴采纳,获得10
8秒前
TAA66完成签到,获得积分10
9秒前
ttthz完成签到,获得积分20
9秒前
11秒前
14秒前
Zhang完成签到,获得积分10
14秒前
言简完成签到,获得积分10
15秒前
15秒前
neonsun完成签到,获得积分10
16秒前
英俊的铭应助大熊采纳,获得10
16秒前
ding应助大熊采纳,获得10
16秒前
酷波er应助葵葵采纳,获得30
16秒前
整齐醉波完成签到 ,获得积分10
16秒前
昏睡的幼翠完成签到,获得积分10
18秒前
move发布了新的文献求助10
19秒前
yuzhanli完成签到,获得积分10
20秒前
可爱的函函应助简隋英采纳,获得10
22秒前
23秒前
25秒前
开心善若完成签到,获得积分10
25秒前
富贵完成签到,获得积分20
26秒前
26秒前
sunyafei发布了新的文献求助10
26秒前
我是老大应助要啥自行车采纳,获得10
27秒前
28秒前
qmx发布了新的文献求助10
28秒前
研友_想想完成签到,获得积分10
29秒前
29秒前
XX发布了新的文献求助10
30秒前
田様应助lss采纳,获得10
31秒前
32秒前
33秒前
doc完成签到,获得积分10
33秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207260
求助须知:如何正确求助?哪些是违规求助? 2856664
关于积分的说明 8106335
捐赠科研通 2521831
什么是DOI,文献DOI怎么找? 1355240
科研通“疑难数据库(出版商)”最低求助积分说明 642172
邀请新用户注册赠送积分活动 613472