Segmentation of tunnel water leakage based on a lightweight DeepLabV3+ model

泄漏(经济) 计算机科学 材料科学 环境科学 经济 宏观经济学
作者
Dandan Wang,Gongyu Hou,Q S Chen,Weiyi Li,H.-S. Fu,X. S. Sun,Xiaodong Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015414-015414
标识
DOI:10.1088/1361-6501/ad894f
摘要

Abstract The accurate and efficient detection of water leakage with complex backgrounds is crucial for the safety of metro operations. A lightweight segmentation method for metro tunnel water leakage based on transfer learning is proposed. Firstly, this is based on the Deeplabv3+ model and adopts MobileNetv3-Large as the backbone feature extraction network, which significantly reduces the network parameters and improves the detection speed; secondly, it incorporates the efficient channel attention mechanism, which enables the model to adaptively adjust the weights of the channel features and capture the inter-channel relationships in the image, which significantly improves the model’s ability for feature extraction ability; furthermore, for the problem of severe imbalance between positive and negative samples in the dataset, the recognition accuracy of complex samples is increased by optimizing the loss function; finally, the training method of transfer learning is utilized to solve the problem of scarcity of water leakage dataset, and to improve the model’s accuracy and generalization ability. The results show that the model has more significant detection accuracy and segmentation speed advantages than today’s mainstream semantic segmentation model. With strong generalization ability in complex environments (e.g. low illumination and multiple obstructions), model can be used for intelligent operation and maintenance in metro tunnel projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rubbertail完成签到,获得积分10
1秒前
1秒前
orixero应助重要的奇异果采纳,获得10
1秒前
CC完成签到,获得积分10
1秒前
1秒前
2秒前
所所应助冷静剑鬼采纳,获得10
3秒前
3秒前
yjj6809完成签到,获得积分10
3秒前
研友_Z3vbRn应助kop采纳,获得10
3秒前
4秒前
4秒前
connieGZ完成签到,获得积分10
4秒前
俏皮沁完成签到,获得积分10
4秒前
MoPunk发布了新的文献求助10
5秒前
晨Zhi发布了新的文献求助10
5秒前
千禧完成签到,获得积分20
5秒前
Licy发布了新的文献求助10
7秒前
7秒前
8秒前
快乐科研发布了新的文献求助10
8秒前
烟花应助荀中道采纳,获得10
8秒前
背后海亦发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI2S应助不要科研采纳,获得10
10秒前
褚香旋完成签到,获得积分10
10秒前
kiki完成签到,获得积分10
10秒前
星辰大海应助Mr.Su采纳,获得10
10秒前
苏黎世完成签到,获得积分10
11秒前
11秒前
Ava应助AppleDog采纳,获得10
11秒前
12秒前
缓慢瑛发布了新的文献求助10
12秒前
千禧发布了新的文献求助10
13秒前
Novoa完成签到,获得积分10
13秒前
寒天完成签到,获得积分10
13秒前
澤少发布了新的文献求助10
14秒前
小马甲应助快乐科研采纳,获得10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004