Rapid classification of rice according to storage duration via near-infrared spectroscopy and machine learning

线性判别分析 支持向量机 人工智能 计算机科学 模式识别(心理学)
作者
Chen Zhai,Wenxiu Wang,Man Gao,Xiaohui Feng,Shengjie Zhang,Chengjing Qian
出处
期刊:Talanta open [Elsevier]
卷期号:10: 100343-100343 被引量:1
标识
DOI:10.1016/j.talo.2024.100343
摘要

Rice is the most important staple crop for more than half of the world's population. As rice quality can deteriorate during storage, methods that can effectively classify rice according to its storage duration are essential. However, existing methods of assessing rice storage time are time-consuming, laborious, and incompatible with modern industrial processing technologies. Therefore, we investigated the ability of near-infrared spectroscopy combined with machine learning algorithms to distinguish rice storage duration. A total of 482 rice samples were analyzed, which included 74, 100, and 308 samples produced during 2015–2016, 2017–2018, and 2020–2021, respectively. Five pre-processing methods were initially applied to the spectra to enhance the accuracy of the discrimination model. Subsequently, two-dimensional correlation spectroscopy and competitive adaptive reweighted sampling (CARS) were used to extract the characteristic spectra associated with storage time. Finally, three pattern recognition methods (K-nearest neighbor analysis, linear discriminant analysis, and least squares support vector machine (LS-SVM)) were compared for their effectiveness in constructing classification models. The results indicated that the best model for identifying the storage duration of rice was established after spectral pre-processing with the standard normal variate and first derivative, using the CARS algorithm to select feature wavelengths, and applying the LS-SVM modeling method, which together yielded correct identification rates of 99.72 % and 91.67 % for the calibration and validation sets, respectively. Thus, we propose near-infrared spectroscopy coupled with machine learning algorithms as an effective approach for classifying rice according to storage duration, which can facilitate evaluations of rice freshness in the market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRANE发布了新的文献求助30
1秒前
1秒前
1秒前
布的奈何完成签到,获得积分10
2秒前
晴天完成签到,获得积分20
3秒前
地沙坦发布了新的文献求助20
3秒前
李健的小迷弟应助剪影改采纳,获得10
3秒前
可爱的函函应助NancyDee采纳,获得10
4秒前
南瓜气气完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
明玖完成签到 ,获得积分10
6秒前
脸小呆呆完成签到 ,获得积分10
7秒前
希望天下0贩的0应助晴天采纳,获得10
7秒前
嘿嘿嘿发布了新的文献求助10
8秒前
文静的信封完成签到,获得积分10
9秒前
学习完成签到,获得积分10
9秒前
蔚111完成签到 ,获得积分10
9秒前
经验丰富的菜狗完成签到,获得积分10
9秒前
9秒前
hwzhou10完成签到,获得积分10
10秒前
10秒前
10秒前
Tu完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助李某某采纳,获得10
11秒前
传奇3应助郭郭采纳,获得10
11秒前
科目三应助kingripple采纳,获得10
12秒前
剪影改发布了新的文献求助10
12秒前
15秒前
Qinghua发布了新的文献求助10
16秒前
16秒前
生动的冷雁完成签到,获得积分10
17秒前
1111完成签到 ,获得积分10
17秒前
此去经年完成签到,获得积分10
18秒前
饱满剑封完成签到 ,获得积分10
19秒前
Orange应助zd采纳,获得10
19秒前
19秒前
闪闪念波完成签到 ,获得积分10
21秒前
陈雷完成签到,获得积分10
22秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464156
求助须知:如何正确求助?哪些是违规求助? 3057470
关于积分的说明 9057304
捐赠科研通 2747508
什么是DOI,文献DOI怎么找? 1507390
科研通“疑难数据库(出版商)”最低求助积分说明 696514
邀请新用户注册赠送积分活动 696062