Noise Self-Regression: A New Learning Paradigm to Enhance Low-Light Images Without Task-Related Data

计算机科学 人工智能 噪音(视频) 任务(项目管理) 机器学习 回归 计算机视觉 模式识别(心理学) 图像(数学) 统计 数学 工程类 系统工程
作者
Zhao Zhang,Suiyi Zhao,Xiaojie Jin,Mingliang Xu,Yi Yang,Shuicheng Yan,Meng Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (2): 1073-1088 被引量:8
标识
DOI:10.1109/tpami.2024.3487361
摘要

Deep learning-based low-light image enhancement (LLIE) is a task of leveraging deep neural networks to enhance the image illumination while keeping the image content unchanged. From the perspective of training data, existing methods complete the LLIE task driven by one of the following three data types: paired data, unpaired data and zero-reference data. Each type of these data-driven methods has its own advantages, e.g., zero-reference data-based methods have very low requirements on training data and can meet the human needs in many scenarios. In this paper, we leverage pure Gaussian noise to complete the LLIE task, which further reduces the requirements for training data in LLIE tasks and can be used as another alternative in practical use. Specifically, we propose Noise SElf-Regression (NoiSER) without access to any task-related data, simply learns a convolutional neural network equipped with an instance-normalization layer by taking a random noise image, for each pixel, as both input and output for each training pair, and then the low-light image is fed to the trained network for predicting the normal-light image. Technically, an intuitive explanation for its effectiveness is as follows: 1) the self-regression reconstructs the contrast between adjacent pixels of the input image, 2) the instance-normalization layer may naturally remediate the overall magnitude/lighting of the input image, and 3) the assumption for each pixel enforces the output image to follow the well-known gray-world hypothesis (Buchsbaum, 1980) when the image size is big enough. Compared to current state-of-the-art LLIE methods with access to different task-related data, NoiSER is highly competitive in enhancement quality, yet with a much smaller model size, and much lower training and inference cost. In addition, the experiments also demonstrate that NoiSER has great potential in overexposure suppression and joint processing with other restoration tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skbz完成签到,获得积分10
刚刚
娇娇完成签到,获得积分10
刚刚
1秒前
小池发布了新的文献求助10
1秒前
1秒前
可可布朗尼完成签到,获得积分10
1秒前
鑫问发布了新的文献求助10
1秒前
飘逸曼彤发布了新的文献求助10
2秒前
雪白的诺言完成签到 ,获得积分10
2秒前
Yyyang完成签到,获得积分10
2秒前
懦弱的妙彤完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
赘婿应助mol采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Mingda发布了新的文献求助10
4秒前
4秒前
4秒前
无极微光应助jtyt采纳,获得20
4秒前
4秒前
5秒前
5秒前
开放以蓝发布了新的文献求助10
5秒前
6秒前
6秒前
小米应助科研通管家采纳,获得10
6秒前
小米应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小米应助科研通管家采纳,获得10
6秒前
张北北完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
小米应助科研通管家采纳,获得10
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965