已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Noise Self-Regression: A New Learning Paradigm to Enhance Low-Light Images Without Task-Related Data

计算机科学 人工智能 噪音(视频) 任务(项目管理) 机器学习 回归 计算机视觉 模式识别(心理学) 图像(数学) 统计 数学 工程类 系统工程
作者
Zhao Zhang,Suiyi Zhao,Xiaojie Jin,Mingliang Xu,Yi Yang,Shuicheng Yan,Meng Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (2): 1073-1088 被引量:8
标识
DOI:10.1109/tpami.2024.3487361
摘要

Deep learning-based low-light image enhancement (LLIE) is a task of leveraging deep neural networks to enhance the image illumination while keeping the image content unchanged. From the perspective of training data, existing methods complete the LLIE task driven by one of the following three data types: paired data, unpaired data and zero-reference data. Each type of these data-driven methods has its own advantages, e.g., zero-reference data-based methods have very low requirements on training data and can meet the human needs in many scenarios. In this paper, we leverage pure Gaussian noise to complete the LLIE task, which further reduces the requirements for training data in LLIE tasks and can be used as another alternative in practical use. Specifically, we propose Noise SElf-Regression (NoiSER) without access to any task-related data, simply learns a convolutional neural network equipped with an instance-normalization layer by taking a random noise image, for each pixel, as both input and output for each training pair, and then the low-light image is fed to the trained network for predicting the normal-light image. Technically, an intuitive explanation for its effectiveness is as follows: 1) the self-regression reconstructs the contrast between adjacent pixels of the input image, 2) the instance-normalization layer may naturally remediate the overall magnitude/lighting of the input image, and 3) the assumption for each pixel enforces the output image to follow the well-known gray-world hypothesis (Buchsbaum, 1980) when the image size is big enough. Compared to current state-of-the-art LLIE methods with access to different task-related data, NoiSER is highly competitive in enhancement quality, yet with a much smaller model size, and much lower training and inference cost. In addition, the experiments also demonstrate that NoiSER has great potential in overexposure suppression and joint processing with other restoration tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助寇博翔采纳,获得10
2秒前
yumiao发布了新的文献求助10
3秒前
华仔应助vayne采纳,获得10
3秒前
dajiejie发布了新的文献求助10
3秒前
nenoaowu发布了新的文献求助10
4秒前
6秒前
8秒前
bkagyin应助nenoaowu采纳,获得10
8秒前
ZJX应助MyAI采纳,获得10
10秒前
10秒前
自然的铅笔完成签到 ,获得积分10
11秒前
yyyyyyypxxxx发布了新的文献求助30
12秒前
Sunbird完成签到,获得积分10
13秒前
毕蓝血完成签到 ,获得积分10
14秒前
14秒前
善良的花菜完成签到 ,获得积分10
14秒前
16秒前
王博林发布了新的文献求助30
17秒前
葡萄糖完成签到 ,获得积分10
17秒前
文静的海发布了新的文献求助10
20秒前
隐形曼青应助一吨好运采纳,获得10
21秒前
cccccgggmmm发布了新的文献求助30
22秒前
sc完成签到,获得积分20
23秒前
粗犷的夏槐完成签到 ,获得积分10
23秒前
24秒前
领导范儿应助高高采纳,获得10
25秒前
johnhush完成签到 ,获得积分10
25秒前
Lucas应助小巧尔蓝采纳,获得20
26秒前
英俊的铭应助李琼琼采纳,获得10
26秒前
科研小白关注了科研通微信公众号
26秒前
CodeCraft应助工大搬砖战神采纳,获得10
27秒前
oyfff完成签到 ,获得积分10
28秒前
番茄酱发布了新的文献求助10
29秒前
文静的海完成签到,获得积分10
29秒前
30秒前
31秒前
31秒前
32秒前
NNNN完成签到,获得积分10
32秒前
大蟋蟀发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396