Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning

经胎盘 胎儿 转染 胎盘 体外 离体 化学 细胞生物学 生物 生物物理学 细胞培养 怀孕 生物化学 遗传学
作者
Amr Abostait,Mahmoud Abdelkarim,Zeqing Bao,Yuichiro Miyake,Wai Hei Tse,Caterina Di Ciano-Oliveir,Tina Buerki‐Thurnherr,Christine Allen,Richard Keijzer,Hagar I. Labouta
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:376: 678-700 被引量:7
标识
DOI:10.1016/j.jconrel.2024.10.047
摘要

There is a clinical need to develop lipid nanoparticles (LNPs) to deliver congenital therapies to the fetus during pregnancy. The aim of these therapies is to restore normal fetal development and prevent irreversible conditions after birth. As a first step, LNPs need to be optimized for transplacental transport, safety on the placental barrier and fetal organs and transfection efficiency. We developed and characterized a library of LNPs of varying compositions and used machine learning (ML) models to delineate the determinants of LNP size and zeta potential. Utilizing different in vitro placental models with the help of a Random Forest algorithm, we could identify the top features driving percentage LNP transport and kinetics at 24 h, out of a total of 18 input features represented by 41 LNP formulations and 48 different transport experiments. We further evaluated the LNPs for safety, placental cell uptake, transfection efficiency in placental trophoblasts and fetal lung fibroblasts. To ensure the integrity of the LNPs following transplacental transport, we screened LNPs for transport and transfection using a high-throughput integrated transport-transfection in vitro model. Finally, we assessed toxicity of the LNPs in a tracheal occlusion fetal lung explant model. LNPs showed little to no toxicity to fetal and placental cells. Immunoglobin G (IgG) orientation on the surface of LNPs, PEGylated lipids, and ionizable lipids had significant effects on placental transport. The Random Forest algorithm identified the top features driving LNPs placental transport percentage and kinetics. Zeta potential emerged in the top driving features. Building on the ML model results, we developed new LNP formulations to further optimize the transport leading to 622 % increase in transport at 24 h versus control LNP formulation. To induce preferential siRNA transfection of fetal lung, we further optimized cationic lipid percentage and the lipid-to-siRNA ratio. Studying LNPs in an integrated placental and fetal lung fibroblasts model showed a strong correlation between zeta potential and fetal lung transfection. Finally, we assessed the toxicity of LNPs in a tracheal occlusion lung explant model. The optimized formulations appeared to be safe on ex vivo fetal lungs as indicated by insignificant changes in apoptosis (Caspase-3) and proliferation (Ki67) markers. In conclusion, we have optimized an LNP formulation that is safe, with high transplacental transport and preferential transfection in fetal lung cells. Our research findings represent an important step toward establishing the safety and effectiveness of LNPs for gene delivery to the fetal organs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
deway发布了新的文献求助10
1秒前
Kinn完成签到,获得积分10
3秒前
3秒前
粥粥完成签到 ,获得积分10
3秒前
研友_8Y26PL完成签到 ,获得积分10
4秒前
cc完成签到,获得积分10
5秒前
喃恬完成签到,获得积分10
7秒前
爆米花应助联勤杜闯采纳,获得10
7秒前
佟谷兰完成签到,获得积分10
8秒前
斯文败类应助deway采纳,获得10
8秒前
雷霆康康完成签到,获得积分10
9秒前
七七完成签到 ,获得积分10
10秒前
11秒前
Jovie给Jovie的求助进行了留言
11秒前
11秒前
11秒前
香菜完成签到,获得积分10
13秒前
老婆婆不讲理完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
Minicoper发布了新的文献求助10
15秒前
16秒前
Zhaowx完成签到,获得积分10
17秒前
magic_sweets完成签到,获得积分10
18秒前
Antonio完成签到,获得积分10
18秒前
坚定的老六完成签到,获得积分10
18秒前
枫叶完成签到 ,获得积分10
19秒前
爆米花应助wangnn采纳,获得10
20秒前
21秒前
Minicoper完成签到,获得积分10
21秒前
小帅完成签到,获得积分10
21秒前
tao完成签到 ,获得积分10
21秒前
96完成签到 ,获得积分10
22秒前
枕雪听冷冷完成签到,获得积分20
24秒前
Jovie完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
852应助123采纳,获得10
28秒前
ll完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910822
求助须知:如何正确求助?哪些是违规求助? 4186436
关于积分的说明 12999794
捐赠科研通 3954003
什么是DOI,文献DOI怎么找? 2168246
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909