根际
撞击坑
生物
微生物种群生物学
火山
植物
地质学
环境科学
细菌
天体生物学
古生物学
作者
Jin Chen,Yiming Zhang,Qingchen Xiao,Boyan Wang,Zishan Li,Keqing Lin,X. P. Geng,Xiaoyu Li
标识
DOI:10.1007/s42832-024-0259-x
摘要
Volcanic eruptions are significant natural disturbances that provide valuable opportunities to study their impacts on soil microorganisms. However, no previous studies have compared the rhizosphere microbial communities of Boehmeria nivea L. in volcanic craters and cones. To address this gap, we conducted a comprehensive investigation using Illumina MiSeq high-throughput sequencing to compare the rhizosphere microbial communities in volcanic craters and cones. Principal Coordinate Analysis revealed significant differences in the rhizosphere microbial communities between the crater and cone. The bacterial communities in the rhizosphere of the crater exhibited higher diversity and evenness compared to the cones. Moreover, the cones displayed more intricate bacterial networks than the crater (nodes 556 vs. 440). Conversely, fungal networks were more complex in the crater than the cone (nodes 943 vs. 967). Additionally, bacterial communities demonstrated greater stability than fungal ones within these volcanic soils (avgK 241.1 vs. 499.7) and (avgCC 1.047 vs. 1.092). Furthermore, the Structural Equation Model demonstrated a direct positive impact of alpha diversity on soil microbial community multifunctionality in the crater (γ = 0.920, P < 0.001). Our findings have presented the opportunity to investigate the characteristics of the rhizosphere microbial communities of Boehmeria nivea L in the crater and cone.
科研通智能强力驱动
Strongly Powered by AbleSci AI